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Abstract

We detail the method of representing the N -mode time evolution operator ÛN ptq as a
product of N -mode squeezing, displacement, and rotation operators up to a phase factor
as outlined by X. Ma and W. Rhodes, hereafter referred to as ‘the authors,’ in [1]. The
Wei-Norman Lie algebraic method of expressing the propagator for a system of first-order
differential operator equations as a finite product of exponential operators is used in con-
junction with disentangling and normal ordering techniques to construct and solve a system
of differential equations arising from the time-dependent Schrödinger equation. The results
are applied to a coupled channel waveguide - ring resonator system with an effective χp2q

nonlinearity under the undepleted pump approximation and the resulting photon statistics
are examined with respect to the input pulse energy UP and duration τP .
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1 Introduction and Lie algebraic preliminaries

1.1 The Lie algebra of constituent Hamiltonians

We consider Hamiltonians of the form

Ĥptq “

n
ÿ

i“1

fiptqĤi (1)

where fiptq are a set of linearly independent and complex-valued functions of time, and Ĥi are
constant Hamiltonian operators. The set of these operators,

!

Ĥi : i “ 1, 2, . . . , n
)

“

!

Ĥ1, Ĥ2, . . . , Ĥn

)

(2)

forms a closed (under the Lie bracket1) n-dimensional2 Lie algebra g. The set of n operators Ĥi

in tĤ1, . . . , Ĥnu (the basis of the Lie algebra g) can be enlarged to a Lie algebra L via repeated
commutation, i.e. via linear combinations of possible Lie brackets of any two elements in g.
Thus, we may consider tHiu to be the set of generators3 of the Lie group L, which is closed
under the following commutation relation:

rĤj , Ĥks “

n
ÿ

l“1

γjklĤl (3)

where γij are the commutation structure constants [2]. The structure constants satisfy the
following two conditions (the first arising from the skew symmetry of the Lie bracket, i.e.
rX,Y s “ ´rY,Xs for all X,Y P g and the second arising from the Jacobi identity rX, rY,Zss `

rY, rZ,Xss ` rZ, rX,Y ss “ 0 for all X,Y, Z P g):

γjkl ` γkjl “ 0
ÿ

n

pγjknγnlm ` γklnγnjm ` γljnγnkmq “ 0

1In general, there is no method to determine the time evolution operator of an arbitrary time-dependent Hamil-
tonian. However, due to the nature of the quadratic Hamiltonian, we can exploit the symmetries corresponding
to the Lie group of the Lie algebra g using the method of Wei and Norman.

2The Hamiltonian is most often rewritten to minimise the dimension of the associated Lie algebra, i.e. the
basis of the Lie algebra is as small as possible yet contains all the terms of the Hamiltonian.

3This set ‘generates’ L in the sense that every element of L is expressible as a linear combination of Lie
brackets of elements of g.
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for all j, k, l,m.

1.2 Unitary evolution operator representations

The Hamiltonian operator governs the evolution of quantum states via the time-dependent
Schrödinger equation:

iℏBtψptq “ Ĥptqψptq. (4)

We may write ψ (which may be time-dependent) as

ψptq “ Ûptqψ0 (5)

where ψ0 “ ψpt0q is the initial condition for (4) and Ûptq is the time-evolution operator. Hence,
we have a first-order linear differential equation for Ûptq:

iℏ
B

Bt
Ûptq “ ĤptqÛptq, Ûp0q “ I (6)

where I is the identity operator. In [3], J. Wei and E. Norman showed that the time-evolution
operator for Hamiltonians of the form equation (1) can be represented as

Ûptq “

n
ź

i“1

exp
”

ciptqĤi

ı

(7)

where ciptq are complex-valued scalar functions of time. Note the key difference between this
representation of the time evolution operator and the result of W. Magnus [4]; 4 the expression
of the time evolution operator as the exponential of a sum is valid only in a neighbourhood of
the origin. On the other hand, the representation of the solution as a product of exponential
factors is global for all solvable5 Lie algebras [2]. Such a representation is known [5] for the
time-evolution operator generated by the Hamiltonian that describes a single-mode Gaussian
squeezed state of the quantum harmonic oscillator via the product of the squeeze, displacement,
and rotation exponential operators:

Ĥptq “
1

2
p̂2 `

1

2
ω2ptqrq̂ ` dptqs2 pℏ ” 1q (8)

where p̂ and q̂ are the familiar generalised position coordinates and momenta, ωptq is the oscil-
lation frequency and dptq is the displacement in position with initial condition dp0q “ 0 due to
the effect of a variable external force that comes into play at t “ 0.

Ûptq “ expriγptqsŜpzptqqD̂pαptqqR̂pϕptqq (9)

where

Ŝpzq ” exp

ˆ

zpâ:q2

2
´
z˚â2

2

˙

(10)

D̂pαq ” exp
`

αâ: ´ α˚â
˘

(11)

R̂pϕq ” exp
`

iϕâ:â
˘

. (12)

We want to show that such a representation is achievable for N -mode quadratic Hamiltonians
using the N -mode counterparts of the squeeze, displacement, and rotation exponential opera-
tors.

4If tĤ1, Ĥ2, . . . , Ĥnu is a basis for g, then the solution of the first order equation can be expressed as Ûptq “

exp
´

řn
i“1 diptqĤi

¯

where diptq are C´valued functions of time.
5The set of elements of the Lie algebra that arise from the commutation of two ’pure’ Lie elements is the 1st

derived algebra. The 2nd derived algebra is defined as the derived algebra of the 1st derived algebra, and so on.
A solvable Lie algebra is defined by Lphq

“ t0u where the superscript h indicates the h-th derived algebra.
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1.3 Definitions of the N-mode squeezing, displacement, rotation, and ladder
operators

First, we define the N -mode ladder (i.e. annihilation and creation) operators:

â ”

»

—

–

â1
...
âN

fi

ffi

fl

(13)

â: ”

»

—

–

â:
1
...

â:

N

fi

ffi

fl

(14)

where âi and â
:

i represent the annihilation and creation operators for the ith mode respectively.
The N -mode squeeze, displacement, and rotation operators are defined as follows:

ŜN pzq ” exp

„

pâ:q⊺zâ:

2
´
â⊺z:â

2

ȷ

(15)

D̂N pαq ” exp
“

α⊺â: ´ α:â
‰

(16)

R̂N pΦq ” exp
“

ipâ:q⊺Φâ
‰

(17)

where z is an N ˆ N matrix6 defined as z “ reiθ “ eiθ
⊺
r⊺, where r is the squeeze parameter

p0 ď rrsij ă 8q and θ is the squeezing angle p0 ď rθsij ď 2πq. Both r and θ are Hermitian
matrices and additionally r is positive semidefinite. Φ “ Φ: is an N ˆ N Hermitian matrix, α
is the amount of displacement in optical phase space and α: ”

“

α˚
1 , . . . , α

˚
N

‰

. Note that each of

the operators ŜN pzq, R̂N pΦq, and D̂N pαq are unitary by definition.

2 Disentangling ŜN

2.1 Outline of the disentangling process

The N -mode squeeze operator is disentangled using the Baker-Campbell-Hausdorff (BCH)
relation, which is derived by Lie algebra matrix techniques. Essentially, by defining oper-
ators that form an infinite dimensional Lie algebra and examining their commutators with
each other, the authors see that the Lie algebra is homomorphic to the Lie algebra sup1, 1q

i.e. there exists a commutator-preserving map between the infinite dimensional Lie alge-
bra formed by their defined operator set and the Lie algebra underlying the special uni-

tary group SUp1, 1q ”

"„

u v
v˚ u˚

ȷ

|u, v P C, uu˚ ´ vv˚ “ 1

*

. The action of this homomor-

phism on the defined operators form a new set of algebraic elements that satisfy some given
commutation relations. This allows for a factorisation7 of the matrix exp

“

A:pzq ´Apzq
‰

as
exp

“

A:pT q
‰

exp rBplnSqs exp r´ApT qs where z “ reiθ was our symmetric N ˆ N matrix, T ”

tanhprqeiθ, and S ” sechprq. As the disentangled form of the N -mode squeezing operator
is uniquely determined by the aforementioned infinite dimensional Lie algebra formed by the
defined operator set, this factorisation yields the following disentangled form of ŜN pzq:

ŜN pzq “ |S|
1
2 exp

„

1

2
pâ:q⊺T â:

ȷ

exp
“

pâ:q⊺plnSqâ
‰

exp

„

´
1

2
â⊺T :â

ȷ

(18)

6Assumed to be symmetric for convenience, as the authors do.
7Refer to Appendix A for the proof.
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where |S|
1
2 ” exp rTrplnSqs. Furthermore, the authors put ŜN pzq into normal ordered form by

proving the following general result for an arbitrary matrix M :

exp
“

pâ:q⊺Mâ
‰

“

8
ÿ

n“0

: rpâ:q⊺peM ´ Iqâsn :

n!
“

8
ÿ

n“0

ÿ

tniju

N
ź

i,j“1

peM ´ Iq
nij

ij

nij !

N
ź

k“1

â:qk
k

N
ź

k“1

âpkk (19)

where qk “
ř

m nkm and pk “
ř

m nmk. The notation : : denotes normal ordering without
making use of the standard commutation relation (defined in Appendix B), and

ř

tniju indicates

summation over all partitions of n “
řN

i,j“1 nij which are defined to be the individual sums of
positive integers to the integer n. The proof is shown in Appendix B. Applying the theorem to
exp

“

pâ:q⊺plnSqâ
‰

for M “ lnS 8, we derive

ŜN pzq “ |S|
1
2 exp

„

1

2
pâ:q⊺T â:

ȷ

«

8
ÿ

n“0

: rpâ:q⊺pS ´ Iqâsn :

n!

ff

exp

„

´
1

2
â⊺T :â

ȷ

. (20)

The general theorem of equation (19) is also used to derive the normal ordered form for the
operator product ŜN pzqD̂N pαqR̂N pΦq:

ŜN pzqD̂N pαqR̂N pΦq “ |S|
1
2 exp

„

´
1

2
pα:α ` α⊺T :αq

ȷ

exp

„

α⊺S⊺â: `
1

2
pâ:q⊺T â:

ȷ

ˆ

«

8
ÿ

n“0

: rpâ:q⊺pSeiΦ ´ Iqâsn :

n!

ff

exp

„

´pα⊺T : ` α:qeiΦâ´
1

2
â⊺eiΦ

⊺
â

ȷ

. (21)

This derivation is shown in Appendix B. This normal ordering process will prove to be almost
parallel to the process used to put the N -mode time-evolution operator from the exponential
factor form into the normal ordered form.

2.2 The general N-mode quadratic Hamiltonian and the expected form of
the evolution operator

First, we introduce the N -mode quadratic Hamiltonian in its general form as presented by the
authors:

ĤN ptq “ pâ:q⊺ωptqâ` pâ:q⊺fptqâ: ` pâq⊺f :ptqâ` g⊺ptqâ: ` g:ptqâ` hptq (22)

where ωptq is an N ˆ N Hermitian matrix, fptq is an N ˆ N symmetric matrix, gptq is an
N ˆ 1 matrix, and hptq is a real function. We want to show that the representation for the
time-evolution operator of the N -mode quadratic Hamiltonian can be put into a form similar
to equation (9):

ÛN ptq “ exp riγN ptqs ŜN pzqD̂N pαqR̂N pΦq (23)

The key difference between the operator product in equation (21) and the exponential factor
product form in equation (9) is the new factor, an overall phase factor exp riγN ptqs. Using normal
ordering techniques (as shown in Appendix B), we can express the time-evolution operator as

ÛN ptq “ exp rAptqs exp
“

B⊺ptqâ: ` pâ:q⊺Cptqâ:
‰

«

8
ÿ

n“0

: rpâ:q⊺Dptqâsn :

n!

ff

exp rE⊺ptqâ` â⊺F ptqâs

(24)

8What does the logarithm of an operator mean? It is equivalent to talking about the logarithm of a matrix.
(Hall 2015) defines it as

logA “

8
ÿ

m“1

p´1q
m`1 pA ´ Iq

m

m

in Theorem 2.8. It is well-defined and continuous on the set of all n ˆ n matrices A with }A ´ I} ă 1

5



where Aptq, Bptq, Cptq, Dptq, Eptq, and F ptq are functions of time with the initial condition

Ap0q “ Bp0q “ Cp0q “ Dp0q “ Ep0q “ F p0q “ 0 (25)

as the initial condition for the time-evolution operator is ÛN pt “ 0q “ I, the identity. The
normal ordered form of the time-evolution operator is still written as the product of exponential
operators, but we introduce the functions of time Aptq, . . . , F ptq that are coefficients of the basis
elements of the Lie algebra generated by the N -mode quadratic Hamiltonian. Note that there
are six such functions because there are six different yet equivalent ways to order9 the product
of the exponentials of the generators (as written in (7)), each with its own set of coefficients.
We want to find these functions to determine the normal ordered form of the N -mode time-
evolution operator and in doing so, prove that we may write the operator as equation (22) with
the appropriate phase factor in terms of these functions.

3 Solving for the parameter functions

To do this, we examine the Schrödinger equation for the N -mode time-evolution operator.
Expanding ĤN ptqÛN ptq on the right hand side of the Schrödinger equation:

iℏ
BUN ptq

Bt
“ ĤN ptqÛN ptq (26)

and comparing terms with identical factors composed of a combination of the four operators
â:, â, pâ:q⊺, pâq⊺ on the left hand side of (26) (after simplification and grouping terms with like
operator factors) we see that these factors comprised of the four aforementioned operators are
the basis elements of the Lie algebra generated by our Hamiltonian ĤN ptq, and comparing the
coefficients of the like terms, we derive the following six differential equations10:

i
B

Bt
Aptq “ Tr

“

f :p2Cptq `BptqB⊺ptqq ` g:ptqBptq ` hptq
‰

, (27)

i
B

Bt
Bptq “ p4Cptqf :ptq ` ωptqqBptq ` 2Cptqg˚ptq ` gptq, (28)

i
B

Bt
Cptq “ 4Cptqf :ptqCptq ` 2ωptqCptq ` fptq, (29)

i
B

Bt
Dptq “ p4Cptqf :ptq ` ωptqqpDptq ` Iq, (30)

i
B

Bt
Eptq “ pD⊺ptq ` Iqp2f :ptqBptq ` g˚ptqq, (31)

i
B

Bt
fptq “ pD⊺ptq ` Iqf :ptqpDptq ` Iq. (32)

Note that ÛN ptq is unitary, i.e.
ÛN Û

˚
N “ Û˚

N ÛN “ I (33)

and the following commutators (proven explicitly in Appendix C):

”

â, ÛN ptq
ı

“ âÛN ptq ´ ÛN ptqâ “
B

Bâ:
ÛN ptq, (34)

”

â:, ÛN ptq
ı

“ â:ÛN ptq ´ ÛN ptqâ: “ ´
B

Bâ
ÛN ptq. (35)

By the unitarity of the time evolution operator, we see that Eptq and F ptq are related to
Bptq, Cptq and Dptq since the differential equations11 for E and F involve D and B, and those

9Simply because 3! “ 6.
10See Appendix D.
11We are dropping the argument “(t)” from the following sections for cleanliness.
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for B,C,D involve only each other (save for C, which involves only itself). From the normal
ordered form of the time evolution operator and the commutation relations shown above12, we
can write the transformation of the â and â: operators via the time evolution operator, i.e.

Û :

N ptqâÛN ptq “ pI ´ 4CC:q´1
“

pD ` Iqâ` 2CppD⊺q: ` 1qâ: ` p2CB˚ `Bq
‰

, (36)

Û :

N ptqâ:ÛN ptq “ pD⊺ ` Iq´1p´2F â` â: ´ Eq. (37)

The Hermitian conjugate of the first transformation equation is

´

Û :

N ptqâÛN ptq
¯˚

“
`

pI ´ 4CC:q´1
“

pD ` Iqâ` 2CppD⊺q: ` 1qâ: ` p2CB˚ `Bq
‰˘˚

“
“

pD ` Iqâ` 2CppD⊺q: ` 1qâ: ` p2CB˚ `Bq
‰˚ `

pI ´ 4CC:q´1
˘˚
. (38)

Simplifying,

“

ppD ` Iqâ` 2CppD⊺q: ` 1qâ:q˚ ` p2CB˚ `Bq˚
‰ `

pI˚ ´ p4CC:q˚q´1
˘

“
“

D˚â` Iâ` 2ppD⊺q: ` 1q˚C˚â: ` 2BC˚ `B˚
‰ `

pI˚ ´ 4pC:q˚C˚q´1
˘

. (39)

Comparing this with the second transformation equation, we find that

F “ ´pD˚ ` Iq´1C:pD ` Iq (40)

E “ ´pD˚ ` Iq´1p2C:B `B˚q (41)

I ´ 4CC: “ pD ` IqpD: ` Iq. (42)

This last equation immediately implies I ´ 4CC: is non-negative. So, defining

C ”
1

2
tanhprqeiθ (43)

where the squeezing parameter r is non-negative, and

B ” sechprqα (44)

we have
I ´ 4CC: “ sech2prq (45)

and
D ` I “ sechprqeiΦ. (46)

Then, the first transformation equation reads

Û :

N ptqâÛN ptq “

”

coshprqeiΦâ` sinhprqeiθe´iΦ⊺
â: ` coshprqeiΦα ` sinhprqeiθe´iΦ⊺

α˚
ı

(47)

“ R̂:

N pΦqD̂:

N pαqŜ:

N pzqâŜ:

N pzqD̂:

N pαqR̂:

N pΦq (48)

via the transformation equations

Ŝ:

N pzqâŜN pzq “ coshprqâ` sinhprqeiθâ: (49)

D̂:

N pαqâD̂N pαq “ â` α. (50)

12The normal ordered form of the time evolution operator (23) and the commutation relations for â and â:

with it can be used to
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4 The phase factor and final operator product form of ÛN

Now, this form of the first transformation equation (48) implies that the time evolution operator
can be written as (22), and if we compare (22) with the normal ordered form of the operator
product

ŜN pzqD̂N pαqR̂N pΦq

which [1] states is

ŜN pzqD̂N pαqR̂N pΦq “
a

|S| exp

„

´
1

2
pα:α ` α⊺T :αq

ȷ

exp

„

α⊺S⊺â: `
1

2
pâ:q⊺T â:

ȷ

ˆ

«

8
ÿ

n“0

: rpâ:q⊺pSeiΦ ´ Iqâsn :

n!

ff

exp

„

´pα⊺T : ` α:qeiΦâ´
1

2
pâq⊺eiΦ

⊺
T :eiΦâ

ȷ

(51)

and use the fact that the differential equation for C is dependent on C itself, we can solve for
the phase factor

γN “ Im
`

A` α⊺C:α
˘

. (52)

4.1 Uniqueness of the operator product form

We know the expression

ÛN ptq “ exp
“

i Im
`

A` α⊺C:α
˘‰

ŜN pzqD̂N pαqR̂N pΦq (53)

is unique as the differential equation for the parameter function C is actually a Riccati equation;
a first order ordinary differential equation which is quadratic in C. It is not necessary for the
other five equations to be of the Riccati form since all six equations are coupled; the presence
of the Riccati form for the differential equation for C is enough to guarantee the uniqueness of
our solution from the implications of the uniqueness and existence of solutions for the Riccati
equation. The general matrix Riccati equation is written as follows:

XDX `XA`A˚X ´W “ 0

where D ě 0 and W ˚ “ W . Comparing this to our equation for C, we have

X “ C, D “ f :, A “ ω and W “ f ´ i 9C

and so the existence and uniqueness result for the Riccati equation can also be formulated for the
equation for C. This equation can be solved (in general) by transforming it into a homogenous
second-order ODE and then utilising a general solution to determine the necessary coefficients
[6], [7].

5 Ring resonator system simulation results

The results we obtained can be applied to a coupled channel waveguide - ring resonator system
with an effective χp2q nonlinearity confined to an interaction region limited to the ring. We do
not provide a complete theoretical background here; we refer the reader to the list of references at
the end of this section for a more complete treatment. We introduce the ring resonator system,
the governing Hamiltonian, the system of differential equations describing the dynamics of the
system (with respect to squeezed light generation) and the results of our simulations solving the
system with respect to the following input pulse characteristics: pulse energy, pulse duration,
and the real channel - ring coupling efficiency. Our simulations model lossy generation via the
implementation of a phantom channel.
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5.1 The ring resonator system

The coupled channel waveguide - ring resonator system is an example of an integrated photonic
structure; the channel waveguide serves to confine and guide light towards the ring resonator
which is a variety of waveguide that forms a loop, such that a resonance is observed when the
path length of the loop equals some integral multiple of the wavelength of incoming light. A
diagram is shown below in Figure 1. For an extensive review of ring resonator structures and
parameters, see [8].

Figure 1: Diagram of a coupled channel waveguide - ring resonator with an additional fictitious
coupled channel waveguide called the ‘phantom channel’.

The process of generating squeezed light via the ring resonator is nonlinear with a χp2q nonlin-
earity. We utilise the formalism provided by asymptotic in and out states [9]. For background
on a full treatment of nonlinear quantum optics (including discussions on generating squeezed
light via ring resonators), we refer the reader to [10].

The Hamiltonian of the system is

Hptq “ ℏ
ÿ

k,l

∆klptqâ
:

kâl ` ℏ
ÿ

k,l

ζklptqâ
:

kâ
:

l ` H.c. (54)

The Hamiltonian has the form H “ HL `HNL with HL the linear contribution and HNL the
nonlinear contribution. In general, the Hamiltonian for such a system would not be quadratic;
it would consist of higher order terms in â and â:. The reason we are able to use the results
we have obtained in the previous sections is the undepleted pump approximation (also known
as the parametric approximation) [11]. We treat the pump field (the field of incoming photons)
classically and neglect pump depletion, which is the depletion of the pump power due to losses
such as conversion into some alternate optical power that does not contribute to the squeezed
light generation. The Hamiltonian of the system reduces to a quadratic form under this ap-
proximation.

To model the possible scattering losses of light into the environment, we introduce a phantom
channel (as depicted in Figure 1) that has a fictitious coupling to the ring resonator. The
Hamiltonian is modified to include the phantom channel by writing H “ HL `HPh where HPh

is the contribution from the phantom channel.

5.2 The dynamics of the system

As shown in the previous sections, we can write the time evolution operator in a unique factorised
form, expriγsŜN pzqD̂N pαqR̂N pΦq. However, since our Hamiltonian has no single operator terms
in â and â:, the displacement operator does not contribute (with the displacement parameters

9



identically zero), so the factorised form reduces to

Uptq “ expriθptqsŜN pzqR̂N pΦq (55)

with the phase rewritten as γ ” θptq.

The process of solving for the evolution operator of the system reduces to determining the
squeezing matrix Jptq, the rotation matrix ϕptq and the phase θptq. To this end, it can be shown
(manuscript in progress) that in the Heisenberg picture, the system of differential equations we
must solve to obtain these elements is

d

dt
Vptq “ ´i∆ptqVptq ´ 2iζptqW˚ptq

d

dt
Wptq “ ´i∆ptqWptq ´ 2iζptqV˚ptq

(56)

with the initial condition that Vpt0q is the identity and Wpt0q is a matrix of zeroes. These
matrices satisfy the additional constraints

0 “ WptqV⊺ptq ´ VptqW⊺ptq

1 “ VptqV:ptq ´ WptqW:ptq
(57)

as a direct consequence of the usual annihilation and creation operator commutation relation
being preserved by the propagator of the differential equation governing the time evolution of
â and â: via the given Hamiltonian.

5.3 Simulation results

We implemented a 4th order Runge-Kutta method to solve the system of ordinary differential
equations. The results were unpacked using the process described in the manuscript and the
elements of the squeezing matrix were used to generate the photon statistics of the outgoing
light. The key statistics were the total number of generated photon numbers and the Schmidt
number. We describe the utility and nature of these statistics below in context with our results.

5.3.1 Total number of generated photons

The total number of generated photons is the number of photons coming through the output
waveguide post the nonlinear optical process occuring in the interaction region of the ring
resonator. They comprise the generated squeezed light. This number varies with respect to a
range of characteristics for the input pulse. We vary the input pulse power UP (pJ) and duration
τP (ns) and keep the other variables fixed (including the coupling efficiency η “ ηC “ ηS “

ηP “ 0.5). The results are formatted as a heatmap with a color gradient scheme indicating the
magnitude of the data, and an overlying contour plot is imposed to visualise isoclines of equal
magnitude data. See Figure 2.
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(a) The raw heatmap showing the number of to-
tal generated photons through the ring resonator
system with respect to the power of the input
pulse UP and the duration of the input pulse τP .
The undepleted pump approximation has been
made and scattering losses have been modeled by
a phantom channel.

(b) An overlaid contour plot over the raw
heatmap, showing isoclines for the total number
of generated photons with respect to UP and τP .
We note the presence of a ‘sweet spot‘ that indi-
cates a maximisation of the number of total gen-
erated photons (approximately 27.9) correspond-
ing to around UP « 2.0 pJ and τP « 2.93 ns.

Figure 2: The raw heatmap and overlaid contour plot for the total number of generated photons
with respect to input pulse power UP and input pulse duration τP ranging over 0.10 - 2.00 pJ
and 0.10 - 10.00 nS respectively.

The existence of the sweet spot is expected; for a very short pulse duration, the width of the
pulse in frequency space is much larger than the width of the ring resonance. This results in
only a small fraction of the input pulse entering the ring. For fixed pulse energy, the power of
the pulse decreases with respect to increasing pulse duration. As the duration increases, more
of the pulse is sent into the ring but the decreased power results in a reduction in the number
of photons generated.

5.3.2 Schmidt number

The Schmidt number K “characterises the effective number of spectral or temporal modes” in
the Schmidt decomposition as stated in [12]. It is given by

K “
p
ř

λ sinh
2prλqq2

ř

λ sinh
4prλq

(58)

where rλ are the squeezing parameters associated with the Schmidt modes [13]. It is a measure
of the purity of the produced states, i.e. a measure of the quality of entanglement. We refer the
reader to [12] for a full description. It is desirable to minimise this number to K „ 1.0 (which
would correspond to increased purity) when generating squeezed light as this leads to squeezing
which is effectively single mode. Moreover, Schmidt numbers close to 1.0 are desirable in the
weak squeezing limit where only a pair of photons are generated since this corresponds to the
creation of heralded single photons. See Figures 3 and 4.
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(a) The raw heatmap showing the Schmidt num-
ber with respect to the power of the input pulse
UP and the duration of the input pulse τP . The
undepleted pump approximation has been made
and scattering losses have been modeled by a
phantom channel.

(b) An overlaid contour plot over the raw
heatmap, showing isoclines for the Schmidt num-
ber. We show the region of interest in this figure
(corresponding to K values approaching 1.0) in
Figure 4.

Figure 3: The raw heatmap and overlaid contour plot for the Schmidt number with respect to
input pulse power UP and input pulse duration τP ranging over 0.10 - 2.00 pJ and 0.10 - 10.00
nS respectively.

(a) A reversed color-scheme contour plot with a
focus on the region of K „ 1.0.

(b) The contour plot in (a) with further magnifi-
cation.

Figure 4: Reverse color-scheme contour plots displaying the region of minimsed Schmidt num-
ber in greater detail. The contour plot in (a) is produced via magnification on the region of
minimised Schmidt number (isoclines close to K “ 1.0). The reversed color scheme reveals a
similar isocline pattern to the plot in Figure 2(b), with the sweet spot area corresponding to a
similar area of minimised Schmidt number, as expected given the relationship between the two
statistics. We show the region of interest in greater detail in (b).

5.3.3 Real channel coupling efficiency

The channel waveguide and ring resonator couple via the overlap of the evanescent fields associ-
ated with the ring and the channel. The coupling of the channel waveguide to the ring resonator
is indicated in Figure 1. The efficiency of this coupling ranges from 0.01 to 0.99 in our simula-
tion (with efficiency under 0.50 resulting in undercoupling and efficiency over 0.50 resulting in
overcoupling). See Figure 5. For a complete description of the mechanism of coupling, see [10]
and [8].
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(a) Plot of the total number of photons generated
with respect to the real coupling efficiency η “

ηC “ ηS “ ηP . We see a peak in the number of
total number of photons generated at η “ 0.4.

(b) Plot of the Schmidt number with respect to
the real coupling efficiency η “ ηC “ ηS “ ηP .
We see a minimum close to K “ 1 for η “ 0.4.

Figure 5: Plots showing the variation in the total number of photons generated and the Schmidt
number with respect to the coupling efficiency η. The values of UP and τP are fixed to be those
corresponding to the sweet spot observed in Figure 2(b). With the peak in the total number of
photons generated and the minimum in the Schmidt number both corresponding to η “ 0.4 (as
expected given the relation between the total number of photons generated and the Schmidt
number), the results agree with [14].

6 Conclusion

We have reconstructed a proof for the unique factorised representation of the time evolution
operator for an N -mode quadratic Hamiltonian due to [1], providing the necessary Lie algebraic
background and operator calculus methods for normal ordering and disentangling. We applied
this result to the process of generating squeezed light via a coupled channel waveguide - ring
resonator system with an effective χp2q nonlinearity and examined the variation in the total
number of photons generated and the Schmidt number for a range of input pulse energies UP

and durations τP . We identified the optimal parameter values within these ranges that max-
imise the total number of generated photons and minimise the Schmidt number. Using these
values, we determined the optimal real waveguide-to-ring coupling efficiency η.

The fact that such a unique form for the time evolution operator is possible is very useful due to
the ubiquity of quadratic Hamiltonians governing squeezed light generation within the context
of integrated photonic structures. Although the original proof in [1] is from 1990, we find
that the emergence of new methods incorporating integrated photonic structures (such as ring
resonator systems) has resulted in a necessary reexamination of the theoretical underpinnings
of modern quantum optics, with direct links to applications and simulations of such systems.
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7 Appendix A

7.1 Lie-algebraic background to the disentangling of operators

In section 2, we noted that the authors define operators forming an infinite dimensional Lie
algebra and then, via the commutators of these operators with the others, understood that
the Lie algebra is homomorphic to su(1,1). The action of the homomorphism on the defined
operators led to the rise of a new set of algebraic elements satisfying given commutation relations
that ultimately allow for the factorisation of a specific matrix that is very useful in our efforts
to disentangle ŜN . In this appendix, we provide a proof for this (which the authors do not
provide).

7.1.1 Defining Âpuq, Â:pvq, B̂pwq and their infinite-dimensional Lie algebra

The authors define the operators Âpuq, Â:pvq, and B̂pwq as follows:

Âpuq :“
1

2
â⊺u:â (59)

Â:pvq :“
1

2
â:⊺vâ: (60)

B̂pwq :“
1

2
pâ:⊺wâ` â⊺w⊺â:q (61)

where u, v, and w are N ˆN matrices. Using the BCH formula, the authors show that

exp
”

´B̂pwq

ı

Âpuq exp
”

B̂pwq

ı

“ Âpuq
`

exp
“

w:
‰

u exp
“

w⊺:
‰˘

(62)

exp
”

B̂pwq

ı

Â:pvq exp
”

´B̂pwq

ı

“ Â: pexprwsv exprw⊺sq (63)

The authors then state that the operator set

tÂpuq, Â:pvq, B̂pwq|u, v “ pzz:qnz, w “ pzz:qmu, with n “ 0, 1, . . . , and m “ 1, 2, . . . (64)

with z “ z⊺ forms a Lie algebra L of infinite dimension, with the trivial Lie bracket:

rÂpuq, Âpvqs “ rÂ:puq, Â:pvqs “ rB̂pwq, B̂pw1qs “ 0. (65)

Proof. We see that the vector space formed by (64) consists of a countably infinite number of
vectors since the operators take on a countably infinite number of inputs that are indexed by
the powers involved n “ 0, 1, . . . and m “ 1, 2, . . . , i.e. the powers form an index for the input
vectors in addition to their usual function as powers acting on functions of the parameter z.
Hence, since the vector space is infinite dimensional, so is the Lie algebra. The fact that the
vector space forms a Lie algebra is demonstrated by the authors, by showing the Lie bracket of
any two vectors in this vector space satisfies the properties of the Lie bracket.

7.1.2 The homomorphism ψ and matrix representations

This Lie algebra is homomorphic to the Lie algebra sup1, 1q, via the homeomorphism ψ : L Ñ

sup1, 1q13:
ψrÂpuqs “ L´, ψrÂ:pvqs “ L`, ψrB̂pwqs “ 2L0 (66)

where these operators satisfy the following commutation relations:

rL´, L`s “ 2L0, rL0, L˘s “ ˘L˘. (67)

13See [15] for more information on the ubiquity of su(1,1) in quantum optics.
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The representation of L is the homomorphism ψ. It is faithful, i.e. the kernel (the part of
the domain of ψ that maps to the zero vector) is t0u itself. Simply put, this means that the
transformation is injective. The matrix form of the representation is the following:

Apuq ”

„

0 0
´u: 0

ȷ

, A:pvq ”

„

0 v
0 0

ȷ

, Bpwq ”

„

w 0
0 ´w⊺

ȷ

(68)

where, as we recall, u, v and w are N ˆ N matrices. Thus, the dimension of the matrices
representing the elements of L is 2N ˆ2N . They must satisfy the same commutation rules that
the operator set satisfied.

7.1.3 Matrix factorisation underlying disentangling

Recall that z “ r expriθs “ expriθ⊺sr⊺ where r was the squeeze parameter (PD/PSD Hermitian
matrix, i.e. with nonnegative finite elements) and θ was the squeezing angle (Hermitian matrix
with elements 0 ď rθsij ď 2π). We want to factorise the matrix exp

“

A:pzq ´Apzq
‰

; as defined

by the first equation in (15), exp
“

A:pzq ´Apzq
‰

represents ŜN pzq.

exp
“

A:pzq ´Apzq
‰

“ exp

„„

0 z
z: 0

ȷȷ

(69)

by the matrix representations of A: and A in (68). The matrix exponential is defined as a power
series

exprAs “

8
ÿ

n“0

An

n!
(70)

Expanding exp

„„

0 z
z: 0

ȷȷ

using this definition, we find that the zeroth order term is

„

0 z
z: 0

ȷ0

0!
“ I (71)

the 2 ˆ 2 identity matrix. The first order term is

„

0 z
z: 0

ȷ1

1!
“

„

0 z
z: 0

ȷ

(72)

The second order term is

„

0 z
z: 0

ȷ2

2!
“

1

2

„

0 z
z: 0

ȷ „

0 z
z: 0

ȷ

“
1

2

„

zz: 0
0 z:z

ȷ

(73)

The third order term is

„

0 z
z: 0

ȷ3

3!
“

1

6

„

0 z
z: 0

ȷ „

0 z
z: 0

ȷ „

0 z
z: 0

ȷ

“
1

6

„

0 zz:z
z:zz: 0

ȷ

(74)

Hence, up to the third order term, the Taylor expansion of the matrix exponential is

exp

„„

0 z
z: 0

ȷȷ

“ I `

„

0 z
z: 0

ȷ

`
1

2

„

zz: 0
0 z:z

ȷ

`
1

6

„

0 zz:z
z:zz: 0

ȷ

` h.o.t. (75)
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Using the definition of z as z “ r expriθs “ expriθ⊺sr⊺, we can write the expansion in terms of
the squeezing parameter and squeezing angle:

exp

„„

0 z
z: 0

ȷȷ

“ I `

„

0 r expriθs

expr´iθsr: 0

ȷ

`

1

2

„

r expriθs expr´iθsr⊺ 0
0 pr⊺q: expr´iθ⊺s expriθ⊺sr⊺

ȷ

`

1

6

„

0 r expriθs expr´iθsr:r expriθs

pr⊺q: expr´iθ⊺s expriθ⊺sr⊺pr⊺q: expr´iθ⊺s 0

ȷ

` h.o.t. (76)

Simplifying by recalling that r: “ r due to r being hermitian14, we get

exp

„„

0 z
z: 0

ȷȷ

“ I `

„

0 r expriθs

expr´iθsr 0

ȷ

`
1

2

„

r2 0
0 pr⊺q2

ȷ

`

1

6

„

0 r3 expriθs

rr⊺r expr´iθ⊺s 0

ȷ

` h.o.t (77)

In general, the Nth term of the expansion will consist of even functions of r:

„

0 z
z: 0

ȷN

“

„

rN 0
0 pr⊺qN

ȷ

(78)

as p´rqN for even N is rN . Then, N ` 1 will be an odd power and accordingly the N ` 1th
term of the expansion will consist of odd functions;

„

0 z
z: 0

ȷN`1

“

„

0 rN`1 expriθs

prr⊺qNr expr´iθ⊺s 0

ȷ

(79)

as p´rqN`1 “ ´rN`1. This continues for N ` 2 (even), N ` 3 (odd), and so on. Taking the
individual terms of the expansion of the exponential matrix into a single 2 ˆ 2 matrix, the
matrix elements will be:
In the (1,1) position:

1 `
1

2!
r2 `

1

4!
r4 ` ¨ ¨ ¨ `

1

N !
rN . (80)

In the (1,2) position:

r expriθs `
1

3!
r3 expriθs ` ¨ ¨ ¨ `

1

pN ´ 1q!
rN´1 expriθs. (81)

In the (2,1) position:

expr´iθsr⊺ `
1

3!
prr⊺q2r expr´iθs ` . . .

1

pN ´ 1q!
prr⊺qN´1r expr´iθs. (82)

In the (2,2) position:

1 `
1

2!
pr⊺q2 ` ¨ ¨ ¨ `

1

N !
pr⊺qN (83)

assuming we are considering expansion to powers up to N .

14The simplified expressions for the elements of these matrices will differ based on whether we use the z “

r expriθs definition or the z “ expriθ⊺sr⊺ definition. I have used them interchangeably here based on whatever
lead to the most simplified expressions, so even if the expressions will look different if you use the alternative
definition to what I used, rest assured that they are equivalent.
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Now, we see that the power series in the (1,1) position is exactly the Taylor expansion of coshprq,
the power series in the (1,2) position is exactly the Taylor expansion of sinhprq expriθs, the power
series in the (2,1) position is exactly the power series of expr´iθs sinhprq and the power series
in the (2,2) position is exactly the Taylor expansion of coshpr⊺q. Hence, we have the following:

exp

„„

0 z
z: 0

ȷȷ

“

„

coshprq sinhprq expriθs

expr´iθs sinhprq coshpr⊺q

ȷ

(84)

The authors then state that this is equal to the following decomposition:
„

I T
0 I

ȷ „

S 0
0 pS⊺q´1

ȷ „

I 0
T : I

ȷ

(85)

where I is the identity matrix, T :“ tanhprq expriθs, and S :“ sechprq. To verify this, we
perform the multiplication:

„

I T
0 I

ȷ „

S 0
0 pS⊺q´1

ȷ „

I 0
T : I

ȷ

“

«

sechprq ` tanhprq expriθs coshprq
⊺ expr´iθs tanhprq

: tanhprq expriθs coshprq
⊺

coshprq expr´iθs tanhprq
: coshprq

⊺

ff

(86)

By the definition of z as a symmetric matrix, we see that the decomposition z “ r expriθs “

expriθ⊺sr⊺ implies

fprq expriθs “

#

expriθsfpr⊺q if fp´rq “ fprq

expriθ⊺sfpr⊺q if fp´rq “ ´fprq
(87)

where f is taken to be expandable as a power series in r. Using this fact,

sechprq ` tanhprq expriθs coshprq
⊺ expr´iθs tanhprq

:
“ sechprq ` tanhprq coshprq tanhprq

which reduces to

1

coshprq
`

sinh2prq

coshprq
“

1 ` sinh2prq

coshprq
“

1 ` cosh2prq ´ 1

coshprq
“ coshprq (88)

Hence,
sechprq ` tanhprq expriθs coshprq

⊺ expr´iθs tanhprq
:

“ coshprq. (89)

Similarly, the rest of the matrix elements reduce to

tanhprq coshprq
⊺

“ sinhprq expriθs, (90)

coshprq expr´iθs tanhprq
:

“ expr´iθs sinhprq, (91)

coshprq
⊺

“ coshpr⊺q (92)

using (87). Hence, we have verified the equality between the exponential of the matrix involving
z and z: and the matrix decomposition in terms of I, T , and S. Comparing the matrices in the
decomposition with the matrix representation of the operator set (eqn. 68), we see that

„

I T
0 I

ȷ „

S 0
0 pS⊺q´1

ȷ „

I 0
T : I

ȷ

“ exp
“

A:pT q
‰

exprBplnSqs expr´ApT qs (93)

and so we have obtained the factorisation of the matrix exp
“

A:pzq ´Apzq
‰

representing the
N -mode squeezing operator.

The disentangled form of ŜN is uniquely determined by the structure of L, i.e. the generators
of su(1,1), L˘, L0 which we wrote and their commutators with each other ensure that the
disentangled form of ŜN is unique. The disentanging is then performed using the BCH relation
as shown in Appendix C.
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8 Appendix B

8.1 A note on normal ordering

The concept of normal ordering was first introduced by Gian-Carlo Wick [16] in the context
of quantum field theory to avoid the infinities that arose during calculations of field operator
expectation values in terms of â: and â. It has since found extensive use whenever we come
across tedious calculations that involve combinations of â: and â. We reproduce a definition15

of normal ordering due to C.L. Mehta, [17]:

Remark (Normal ordering notation, f pnq and : : ). Let fpâ, â:q be an arbitrary operator func-
tion of the annihilation and creation operators â and â: that obey the usual commutation relation
râ, â:s “ 1. This commutation relation may be used to put the creation operators occuring within
the function to the left of the annihilation operators. When this is the case, the function is said
to be in normal ordered form. Denote this normal ordered form by f pnqpâ, â:q. On the other
hand, : fpâ, â:q : denotes the form obtained by simply rearranging the annihilation and creation
operators without using the commutation relation. By definition,

f pnqpâ, â:q “ : f pnqpâ, â:q : (94)

which holds since the colon notation is redundant for a function that is already normal ordered
using the commutation relation.

We provide a few elementary examples:

Example 1. Let fpâ, â:q “ ââ:. Then, f pnqpâ, â:q “ â:â` 1 and : fpâ, â:q : “ â:â.

Example 2. In general, fpâ, â:q “ f pnqpâ, â:q “
ř

r,s f
pnq
rs â:râs.

The second example shows that in the operator sense, the operator functions are equal even
though their forms look different. This ordering exists for any operator function that can be
expanded as a power series in â and â:. This is a very useful fact that we have repeatedly used
throughout our calculations. We now define the inverse16 of the normal ordering operator N
(the properties of the normal ordering operator itself are easily read off from the properties of
the inverse).

Definition 1 (Inverse of the normal ordering operator, N´1). The operator N´1 transforms
the operator function f pnqpâ, â:q to an ordinary function f̄ pnqpα, α˚q of the complex variable α
by simply replacing instances of â and â: by α and α˚ respectively, i.e. N´1râ:lâms “ α˚lαm

where l,m P Z. It has the following properties:

1. Linearity: N´1rf
pnq

1 pα, α˚q ` cf
pnqpα,α˚q

2 s “ f̄
pnq

1 pâ, â:q ` cf̄
pnq

2 pâ, â:q for c P C.

2. N´1rcIs “ c where I is the identity.

From these properties, we have

N´1rf pnqpâ, â:qs “
ÿ

r,s

f pnq
rs α

˚rαs “ f̄ pnqpα, α˚q. (95)

By the uniqueness of the normally ordered form, there is a one-to-one correspondence between
the normal ordered operator function f pnqpâ, â:q and the ordinary function f̄ pnqpα, α˚q. This
transformation is explored in greater depth in Appendix E.

15The multimode case is easily found by generalising the single mode case.
16We introduce the inverse instead of N itself due to the utility of explicitly showing the properties of a map

that takes operator functions to ordinary functions.
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8.2 Disentangling and normal ordering the operator product

The general theorem of equation (19) is used to derive the normal ordered form for the operator
product ŜN pzqD̂N pαqR̂N pΦq:

ŜN pzqD̂N pαqR̂N pΦq “ |S|
1
2 exp

„

´
1

2
pα:α ` α⊺T :αq

ȷ

exp

„

α⊺S⊺â: `
1

2
pâ:q⊺T â:

ȷ

ˆ

«

8
ÿ

n“0

: rpâ:q⊺pSeiΦ ´ Iqâsn :

n!

ff

exp

„

´pα⊺T : ` α:qeiΦâ´
1

2
â⊺eiΦ

⊺
â

ȷ

(96)

We outline the derivation here, beginning with the case of normal ordering just the squeezing
operator ŜN . The disentangled form of ŜN is (18), where we note that there exists a product of
three exponential terms. We take the second of these three terms, exp

“

pâ:q⊺plnSqâ
‰

, and find
the normal-ordered form of this operator. The authors use the following theorem:

Theorem 1. For an arbitrary matrix M ,

exp
“

pâ:q⊺Mâ
‰

“

8
ÿ

n“0

: rpâ:q⊺peM ´ Iqâsn :

n!
“

8
ÿ

n“0

ÿ

tniju

N
ź

i,j“1

peM ´ Iq
nij

ij

nij !

N
ź

k“1

â:qk
k

N
ź

k“1

âpkk (97)

where qk “
ř

m nkm and pk “
ř

m nmk. The notation : : denotes normal ordering, and
ř

tniju

indicates summing over all partitions of n “
řN

i,j“1 nij which are defined to be the individual

sums of positive integers to the integer n.17

We provide a brief outline of the proof of theorem 1:

Proof. From the BCH formula

exp
”

Â
ı

B̂ exp
”

´Â
ı

“ B̂ ` rÂ, B̂s `
1

2!
rÂ, rÂ, B̂ss ` . . .

we directly see that

exp
“

´pâ:q⊺Mâ
‰

â exp
“

pâ:q⊺Mâ
‰

“ â` r´pâ:q⊺Mâ, âs `
1

2!
r´pâ:q⊺Mâ, r´pâ:q⊺Mâ, âss ` . . .

“ â´ pâ:q⊺Mââ`
1

2!
pâ:q⊺Mâpâ:q⊺Mââ´

1

3!
pâ:q⊺Mâpâ:q⊺Mâpâ:q⊺Mââ` . . .

“ â´ pâ:q⊺Mâ`
1

2!
pâ:q⊺Mpâ:q⊺Mâ´

1

3!
pâ:q⊺Mpâ:q⊺Mpâ:q⊺Mâ` . . .

“ â´Mâ`
1

2!
M2â´

1

3!
M3â` . . .

“ exprM sâ

where the penultimate step is the Taylor expansion of exprM sâ. We can rewrite this as

râ, exp
“

pâ:q⊺Mâ
‰

s “ pexprM s ´ Iq exp
“

pâ:q⊺Mâ
‰

â (98)

Let F pâ:, âq “ N
␣

exp
“

pâ:q⊺Mâ
‰(

. Recall that N -mode Gaussian squeezed states are defined
as

|z, αy ” ŜN pzq |αy , |αy ” |α1y ¨ ¨ ¨ |αNy (99)

where the latter is an N -mode coherent state (which is a direct product of N single-mode
coherent states). It satisfies the eigenvalue equation

â |αy “ α |αy (100)

17Note that we have the brackets used after exp to be simple square brackets, not the notation for commutators.
In every other case, it is generally obvious if the brackets denote a commutator or not.
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Then, we can write the inner products

xα| exp
“

pâ:q⊺Mâ
‰

|βy “ xα|βyF pα˚, βq (101)

xα| râ, exp
“

pâ:q⊺Mâ
‰

s |βy “ xα|βy
B

Bα˚
F pα˚, βq (102)

Together with the commutator relation (98), these inner products yield the initial value problem

B

Bα˚
F pα˚, βq “ pexprM s ´ IqF pα˚, βqβ, F p0, βq “ 1 (103)

Integrating with respect to α˚ to solve the differential equation, we find that

F pα˚, βq “ exp
“

α:pexprM s ´ Iqβ
‰

(104)

“

8
ÿ

n“0

rα:pexprM s ´ Iqβsn

n!
(105)

“

8
ÿ

n“0

ÿ

tniju

N
ź

i,j“1

pexprM s ´ Iq
nij

ij

nij !

N
ź

k“1

pα˚
kqqk

N
ź

k“1

βpkk (106)

and this is exactly what was desired: the normal ordered form of the exponential operator
exp

“

pâ:q⊺Mâ
‰

. Applying this to the disentangled form of the N -mode squeeze operator (18),
the authors find the normal ordered form (20), shown again immediately below.

ŜN pzqD̂N pαqR̂N pΦq “ |S|
1
2 exp

„

´
1

2
pα:α ` α⊺T :αq

ȷ

exp

„

α⊺S⊺â: `
1

2
pâ:q⊺T â:

ȷ

ˆ

«

8
ÿ

n“0

: rpâ:q⊺pSeiΦ ´ Iqâsn :

n!

ff

exp

„

´pα⊺T : ` α:qeiΦâ´
1

2
â⊺eiΦ

⊺
â

ȷ

By the properties of normal ordering, we immediately know that the normal ordered form of an
operator product is not equivalent (in the operator sense) to the operator product of individual
normal ordered operators. Hence, this derivation is much more involved, but it still utilises
(104). Recall that the N -mode squeeze, displacement, and rotation operators are defined in
(15):

ŜN pzq ” exp

„

pâ:q⊺zâ:

2
´
â⊺z:â

2

ȷ

D̂N pαq ” exp
“

α⊺â: ´ α:â
‰

R̂N pΦq ” exp
“

ipâ:q⊺Φâ
‰

As we did for ŜN , we must first disentangle each of them using a BCH relation:

Theorem 2. If A and B are two noncommuting operators that satisfy the conditions

rA, rA,Bss “ rB, rA,Bss “ 0

then

exprA`Bs “ exprAs exprBs exp

„

´
1

2
rA,Bs

ȷ

“ exprBs exprAs exp

„

1

2
rA,Bs

ȷ

(107)
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The proof is due to Roy Glauber, as cited in [18].

For D̂N ,

D̂N pαq ” exp
“

α⊺â: ´ α:â
‰

(108)

ùñ A “ α⊺â:, B “ ´α:â (109)

We check that the conditions of the theorem apply:

rA, rA,Bss “ rα⊺â:, rα⊺â:,´α:âss (110)

“ rα⊺â:, α⊺p´α:qrâ:, âss (111)

“ rα⊺â:, α⊺pα:qpIqs (112)

“ rα⊺â:, α⊺pα:qs (113)

“ 0 (114)

since α⊺α: “

»

—

–

α1
...
αN

fi

ffi

fl

“

α˚
1 ¨ ¨ ¨ α˚

N

‰

is simply a scalar. Hence, by the theorem, we can immedi-

ately write

D̂N pαq ” exp
“

α⊺â: ´ α:â
‰

(115)

“ exp
“

´α:â
‰

exp
“

α⊺â:
‰

exp

„

1

2
rα⊺â:,´α:âs

ȷ

(116)

“ exp
“

´α:â
‰

exp
“

α⊺â:
‰

exp

„

1

2
α⊺α:

ȷ

(117)

This is the disentangled form of the N -mode displacement operator. For the N -mode rotation
operator R̂N ,

R̂N pΦq ” exp
“

ipâ:q⊺Φâ
‰

we note that it is in the form of a lone exponential factor, so it is already disentangled. The
product of the three disentangled forms of ŜN , R̂N , and D̂N is

ŜN pzqD̂N pαqR̂N pΦq “ |S|
1
2 exp

„

1

2
pâ:q⊺T â:

ȷ

exp
“

pâ:q⊺plnSqâ
‰

exp

„

´
1

2
â⊺T :â

ȷ

ˆ exp
“

´α:â
‰

exp
“

α⊺â:
‰

exp

„

1

2
α⊺α:

ȷ

ˆ exp
“

ipâ:q⊺Φâ
‰

(118)

Comparing to the normal ordered form of the operator product:

ŜN pzqD̂N pαqR̂N pΦq “ |S|
1
2 exp

„

´
1

2
pα:α ` α⊺T :αq

ȷ

exp

„

α⊺S⊺â: `
1

2
pâ:q⊺T â:

ȷ

ˆ

«

8
ÿ

n“0

: rpâ:q⊺pSeiΦ ´ Iqâsn :

n!

ff

exp

„

´pα⊺T : ` α:qeiΦâ´
1

2
â⊺eiΦ

⊺
â

ȷ

we see that by repeatedly applying the standard commutation relation for annihilation and
creation operators to the disentangled product form and then using the transformation process
outlined in Appendix E, the normal ordered form arises. This is an alternate method that the
authors do not directly use in their derivation; they opt to use Theorem 1 instead, which leads
to the same result more directly. The reason we use the longer (and more tedious) method of
going through the process of applying the commutation relation and then the transformation
is that it is the same mechanism that the theorem utilises, thus providing us with more insight
into the general mathematical technique.
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9 Appendix C

9.1 Some essential commutation relations

The following commutator relations are used in combination with the normal ordered form of
the time evolution operator to write the transformation of the â and â: operators with respect
to the time evolution operator.

”

â, ÛN ptq
ı

“ âÛN ptq ´ ÛN ptqâ “
B

Bâ:
ÛN ptq, (119)

”

â:, ÛN ptq
ı

“ â:ÛN ptq ´ ÛN ptqâ: “ ´
B

Bâ
ÛN ptq. (120)

They follow from a general theorem in [18]. The book does not prove the statement below
explicitly, hence we provide a complete proof for it here.

Theorem 3. Let fpâ, â:q be a function that is expandable as a power series in â and â:. Then,

râ, fpâ, â:qs “
Bf

Bâ:
(121)

and

râ:, fpâ, â:qs “ ´
Bf

Bâ
(122)

Proof. Since f “ f pnq, we may expand the derivative of f with respect to â: as

Bf

Bâ:
“

Bf pnq

Bâ:
“

B

Bâ:

¨

˝

ÿ

j,k

f
pnq

jk â
:j âk

˛

‚ (123)

by expanding f pnq as a power series in â: and â. Differentiating, we find

Bf

Bâ:
“
ÿ

j,k

f
pnq

jk jâ
:pj´1qâk (124)

Now, expanding the commutator râ, fpâ, â:qs,

râ, fpâ, â:qs “
ÿ

j,k

f
pnq

jk râ, â:j âks (125)

As the annihilation and creation operators are noncommuting, we can expand the commutator
in the sum using the identity

rA,BCs “ rA,BsC `BrA,Cs (126)

which yields
ÿ

j,k

f
pnq

jk

´

râ, â:jsâk ` â:jrâ, âks

¯

(127)

The second commutator evaluates to 0. The first commutator, by Theorem 1 in section 3.3 of
[18], evaluates to

râ, â:jsâk “ jâ:pj´1qâk (128)

and so
râ, fpâ, â:qs “

ÿ

j,k

f
pnq

jk râ, â:j âks “
ÿ

j,k

f
pnq

jk jâ
:pj´1qâk (129)

which is precisely what we obtained in equation (124).

The proof for the second commutation relation follows similarly. By this general result, the
commutation relations (119) and (120) follow immediately.
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10 Appendix D

10.1 Time differentiation of the normal ordered time evolution operator

The normal ordered time evolution operator is a product of exponential operators:

ÛN ptq “ exp rAptqs exp
“

B⊺ptqâ: ` pâ:q⊺Cptqâ:
‰

«

8
ÿ

n“0

: rpâ:q⊺Dptqâsn :

n!

ff

exp rE⊺ptqâ` â⊺F ptqâs

The time differentiation:

i
B

Bt
ÛN ptq “ i

B

Bt

˜

exp rAptqs exp
“

B⊺ptqâ: ` pâ:q⊺Cptqâ:
‰

«

8
ÿ

n“0

: rpâ:q⊺Dptqâsn :

n!

ff

exp rE⊺ptqâ` â⊺F ptqâs

¸

(130)
In this normal ordered form, the time evolution operator can be ordered according to a trans-
formation such that the operator function that satisfies the evolution equation (26) is in unique
correspondence with an equivalent function of commuting variables, thus allowing the operator
differential equation (26) to be equivalent to an algebraic differential equation that can be sat-
isfied by ordinary means [19]. Once a solution to the algebraic differential equation is obtained,
the inverse of the original transformation may be applied to yield the operator function that
solves (26). Note the following theorem from [18]:

Theorem 4. If m is an integer and f pnq “ f paq “ f (where the superscript (n) indicates normal
ordered form and (a) indicates antinormal ordered form), then

pâqmfpâ, â:q “ N
„ˆ

α `
B

Bα

˙m

f pnqpα, α˚q

ȷ

“ N
“

xα| pâqmfpâ, â:q |αy
‰

(131)

fpâ, â:qpâ:qm “ N
„ˆ

α˚ `
B

Bα˚

˙m

f pnqpα, α˚q

ȷ

“ N
“

xα| fpâ, â:qpâ:qm |αy
‰

(132)

where N denotes the normal ordering operator.

There is a major note of caution regarding notation here: the variable α used in the state-
ment of this theorem is NOT the same as the coherent state variable α used in writing D̂N pαq.
The α as used in the statement of this theorem is simply a complex variable in ordinary function
space, i.e. a complex algebraic variable. It is used in the sense that we are using the unique
correspondence18 between an operator function in â and â: and an ordinary function in α, α˚

to solve the Schrödinger equation, as used in [19]. This caution also applies for the next appen-
dices; it is an abuse of notation but it is also the convention used throughout the works cited,
so we adhere to it for the sake of reference.

Using this theorem, we can write the term

ĤN pâ, â:, tqÛN ptq “ Ξpα, α˚, tq ˆ exp rGpα, α˚, tqs (133)

where the time evolution operator has been written as

ÛN ptq “ exp rGpα, α˚, tqs (134)

18This technique is incredibly useful; it resolves the issue of non-commutating variables in operator functions
entirely by reformulating our problem in terms of commutating algebraic variables. This new formulation can
be attacked using our arsenal of techniques for solving ordinary differential equations, and applying the inverse
transformation to our solutions yields the solution of the operator formulation.

23



where

Gpα, α˚, tq “ Aptq `B⊺ptqα˚ ` pα˚q⊺Cptqα˚ ` pα˚q⊺Dptqpα `
B

Bα˚
q

` E⊺ptqpα `
B

Bα˚
q ` pα `

B

Bα˚
q⊺F ptqpα `

B

Bα˚
q (135)

and the Hamiltonian is denoted by

Ξpα, α˚, tq “ pα˚q⊺ωptq

ˆ

α `
B

Bα˚

˙

` pα˚q⊺fptqpα˚q`

ˆ

α `
B

Bα˚

˙⊺

f :ptq

ˆ

α `
B

Bα˚

˙

` g⊺ptqpα˚q ` g:ptq

ˆ

α `
B

Bα˚

˙

` hptq (136)

The time derivative shown in (54) is then written

i

ˆ

BA

Bt
`

BB⊺

Bt
α˚ ` pα˚q

⊺ BC

Bt
α˚ ` pα˚q

⊺ BD

Bt

ˆ

α `
B

Bα˚

˙

`
BE

Bt

ˆ

α `
B

Bα˚

˙

`

ˆ

B

Bα˚

˙⊺
BF

Bt

ˆ

α `
B

Bα˚

˙˙

(137)
Expanding the product in equation (57) and matching terms with the same combination of
α, α˚, we can derive the six algebraic differential equations shown in equations (27-32).

11 Appendix E

11.1 The Louisell-Heffner transformation

The underlying mechanism of the calculations done throughout the entire process is the afore-
mentioned unique one-to-one correspondence between an operator function in â, â: (i.e. non-
commutating operators) and an ordinary function in complex variables α, α˚.19 This transfor-
mation was detailed in [19] and we give a brief overview of their general method.

Given a function fpâ, â:q, we may put it into normal-ordered form which generally looks like

f pnqpâi, â
:

i q “
ÿ

cn1,n2,n3,...,nk,m1,m2,m3,...,mi â
:n1
1 â:n2

2 . . . â:nk
k âm1

1 âm2
2 . . . âmi

i (138)

where the coefficients c are functions of time and/or any other parameters involved20. Note that
as we are using the standard commutation relation râi, â

:

js “ δij to put the function into normal

order, the original function and the normal ordered function are equivalent, i.e. f pnq “ f .
Heffner and Louisell define a transformation T : H Ñ C where

T : fpâ, â:q ÞÑ fpα, α˚q

where α and α˚ are complex variables (and hence commute.) T is applied to an operator
function by first putting it into normal order and then substituting â, â: by α, α˚ respectively,
i.e.

Tfpâ, â:q “ f pnqpα, α˚q

Differentiating (138) with respect to time,

Bf pnq

Bt
“

BTf

Bt
“
ÿ

ˆ

B

Bt
cn1,n2,n3,...,nk,m1,m2,m3,...,mi

˙

â:n1
1 â:n2

2 . . . â:nk
k âm1

1 âm2
2 . . . âmi

i “ T
Bf

Bt
(139)

19The caution in Appendix D is applicable here as well!
20The time variable is implicit in the argument of f pnq.
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By the fact that the normal form of an operator function is unique, T is a unique, one-to-one
correspondence between a function of the non-commutating operators and its corresponding
ordinary function of commutating complex algebraic variables. In a similar vein, the inverse
transformation T´1 takes a function of the commuting variables to the same function of the
operators in normal form, with all â operating to the right.

The gist of the method is that we may write the normal ordered version in commuting complex
variables of a given operator function using T , solve the resulting ordinary differential equation
(or system of ordinary differential equations) using regular known methods, and subsequently
transform the solution(s) into normal ordered operator function(s) using T´1.

To put products of operator functions into normal ordered form, we use Theorem 3 from Ap-
pendix C, which can be written as follows: to put â1f

pnqpâ:

i , âiq into normal form, we use the
following relation:

âif
pnqpâ:

i , âiq “ f pnqpâ:

i , âiqâi `
Bf pnqpâ:

i , âiq

Bâ:

i

(140)

which implies

râif
pnqpâ:

i , âiqspnq “ N

˜˜

âi `
B

Bâ:

i

¸

f pnqpâ:

i , âiq

¸

. (141)

This generalises to the following: if we have two normal ordered operator functions f and g,

rgpnqpâ:

i , âiqf
pnqpâ:

i , âiqspnq “ N

˜

gpnq

˜

âi `
B

Bâ:

i

¸

f pnqpâ:

i , âiq

¸

(142)

Thus, by the definition of T and these normal ordering relations, we derive the relations for T
applied to products of operator functions:

T
´

gpâ:

i , âiqfpâ:

i , âiq
¯

“ gpnq

ˆ

α˚, α `
B

Bα˚

˙

Tfpâ:

i , âiq (143)

or

T
´

gpâ:

i , âiqfpâ:

i , âiq
¯

“ f pnq

ˆ

α˚, α `
B

Bα˚

˙

Tgpâ:

i , âiq (144)

As seen in Appendix D, these are the relations we used to derive the system of six differential
equations.
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