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Representing the time evolution operator of a multimode quadratic 
Hamiltonian as an operator product of , , and .S(z) D(α) R(Φ)

Characterising the photon statistics generated via an effective 
 interaction process in a ring resonator system.χ(2)
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Theory: Asymptotic in/out states and effective  interaction in an integrated photonic structureχ(2) 1

Outline of the general asymptotic in/out ket formulation of the photon generation process, with nonlinearity spatially restricted.

Liscidini, M., L. G. Helt, and J. E. Sipe. â€œAsymptotic Fields for a Hamiltonian Treatment of Nonlinear Electromagnetic Phenomena. Physical Review A 85, no. 1 (January 23, 2012). https://doi.org/10.1103/
physreva.85.013833.
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Application: Spontaneous parametric down conversion (SPDC) in a microring resonator
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Theory: Quadratic Hamiltonians and their unitary evolution operators 1

Hamiltonian

Time evolution

Squeezing, rotation, and displacement  
operator definitions

Ma, Xin, and William Rhodes. Multimode Squeeze Operators and Squeezed States. Physical Review A 41, no. 9 (May 1, 1990): 4625-31. https://doi.org/10.1103/physreva.41.4625.
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1

Disentangling individual operators

Disentangling the operator product:

Normal ordering via commutation 
relations

The final normal ordered form
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Schrödinger

1
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1

iℏ dU(t)
dt = H(t)U(t)

U(t0) = 1, H(t) = ℏ∑k,l Δkl(t)a†
k al + ℏ∑k,l ζkl(t)a†

k a†
l + H . c .

⟹ U(t) = S(t)R(t)eiθ(t)

J = ueiα

u = JJ†

Squeezing matrix polar 
decomposition

Theory: Extracting the squeezing and rotation matrices’ elements

Schrödinger Equation

d
dt [ a

a†] = − i [ Δ 2ζ
−2ζ* −Δ*] [ a

a†]
Heisenberg equations for  and a a†

[ a
a†] = [ V W

W* V*] [
a(t0)
a†(t0)]

d
dt

V = − iΔV − 2iζW*

d
dt

W = − iΔW − 2iζV*

Reduction to coupled ODEs

WVT − VWT = 0
VV† − WW† = 1

ODE constraints
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Total number of generated photons 
(preliminary — no phantom channel)

20 points in frequency space,  = 0.1 ns - 5.0 ns &  = 0.1 pJ - 2.0 pJ 
Resolution = 10 x 10

τ U

20 points in frequency space,  = 0.1 ns - 5.0 ns &  = 0.1 pJ - 1.0 pJ 
Resolution = 10 x 10

τ U

20 points in frequency space,  = 0.1 ns - 5.0 ns &  = 0.1 pJ - 2.0 pJ 
Resolution = 20 x 20

τ U

Moral: 20 x 20 resolution insufficient! 
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1Theory: The addition of a phantom channel to model lossy generation

For simplicity, we make the undepleted pump approximation, i.e. the pump source is treated as unaffected by interaction. It is 
a valid approximation in most cases as at most a negligible fraction of the pump power is transferred to the generated fields.
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Adding a phantom channel

Variable  points,  = 0.1 ns - 5.0 ns &  = 0.1 pJ 
- 1.0 pJ 

Resolution: 50 x 50

k τ U

2

K =
1

∑∞
n=0 λ2

n
Schmidt number

“Degree of entanglement”
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Optimising for nphS

For the ranges  = 0.1 pJ - 2.0 pJ and  = 0.1 ns - 10.0 ns, the largest total photon number generated was ~ 27.9, for   ~ 2.0 
pJ and  ~ 2.93 ns.


Why? Very short  means that the frequency of the pulse greatly exceeds the ring resonance width, so only a small fraction of 
the pulse enters the resonator.


UP τP UP

τP

τP

The Sweet Spot
2

12



Going to Schmidt Number 1.0
Returning optimal  and  τP UP

Plotting contour lines and examining K ~ (1.1, 3.0) isoclines, we see that  and  
yielding a Schmidt number around 1.0 are around 1.0 ns and 2.0 pJ respectively.

τP UP
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Maximising nphS, K with respect to η

Changing  from 
[0.1, 0.9] and observing the effects 
on the numbers of photon 
generated and the Schmidt number, 
we see that a peak at 0.4 in nphS 
corresponds to a K value closest to 
1. 


Agreement with Milica Banic’s 
results.

η = ηC = ηS = ηP

Behaviour with respect to coupling 
efficiency
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Conclusion
Main results

Time evolution

15


