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1 Setting up the Hamiltonian

1.1 Defining the nonlinear coefficient Knn1

We start with the nonlinear SFWM Hamiltonian in the interaction picture:

HNLptq “ ´
3
ε0

ÿ

nn1

ż

dk1dk2dk3dk4K
nn1

pk1, k2, k3, k4qe
´iΩnn1 pk1,k2,k3,k4qtâ:nSk1

â:n1Sk2
bPk3bCk4`H.c.

(1)
where the nonlinear coefficient Knn1

pk1, k2, k3, k4q is given by

Knn1

pk1, k2, k3, k4q “

ż

drΓijkl3 prq
”

Dout,i
nSk1

prq
ı˚ ”

Dout,j
n1Sk2

prq
ı˚

Din,k
Pk3
prqDin,l

Ck4
prq. (2)
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We use the formulae for the asymptotic in/out displacement fields in terms of the field enhance-
ment factors, which are given by

FJ´pkq “
1
?

L

ˆ

γ˚J
vJpKJ ´ kq ´ iΓJ

˙

, J “ P,C (3)

for the actual input channels and

F
pnq
S` pkq “

1
?

L

˜

γ
pnq
S

˚

v
pnq
S pK

pnq
S ´ kq ` iΓS

¸

(4)

for the actual output channels. For simplicity, we assume the coupling constants γJ , γS are
real. Then, via equations (A7) - (A9) in Phys. Rev. A 110 033709, the nonlinear coefficient
can be rewritten as

Knn1

pk1, k2, k3, k4q “
~2ε0vP vC

12π2 γNLωSLF pnqS`

˚

pk1qF
pn1q

S`

˚

pk2qFP´pk3qFC´pk4q (5)

Plugging in the formulae for the field enhancement factors and simplifying, we find that the
nonlinear coefficient is given explicitly by

Knn1

pk1, k2, k3, k4q “
~2ε0vP vCωSγNL

12π2L

˜

γ
pnq
S

v
pnq
S pK

pnq
S ´ k1q ´ iΓS

¸˜

γ
pn1q

S

v
pn1q

S pK
pn1q

S ´ k2q ´ iΓS

¸

ˆ

ˆ

γP

vP pKP ´ k3q ´ iΓP

˙ˆ

γC

vCpKC ´ k4q ´ iΓC

˙

(6)

1.2 Defining the detuning parameter Ωnn1

Now for the detuning term. We use the dispersion relation for the channels,

ωJpkq “ ωJ ` vJpk ´KJq (7)

where ωJ is the center frequency of the resonance J , vJ is the group velocity in the channel,
and KJ is the wavenumber for the light in either channel with frequency ωJ , i.e. the center of
the appropriate resonance. We are given that

Ωnn1pk1, k2, k3, k4q ” ωCk4 ` ωPk3 ´ ωn1Sk2 ´ ωnSk1 . (8)

Using the dispersion relation, we can write the detuning parameter explicitly in terms of the
group velocities and wavenumbers:

Ωnn1pk1, k2, k3, k4q “ ωC`ωP´2ωS`vCpk4´KCq`vP pk3´KP q´vSpk2´KSq´vSpk1´KSq. (9)

Now, note that vJKJ “ ωJ , the center frequency. Hence, the expression for Ωnn1 simplifies to

Ωnn1pk1, k2, k3, k4q “ vCk4 ` vPk3 ´ vSk2 ´ vSk1. (10)

1.3 Putting Knn1 and Ωnn1 together: checking the low-gain solution

We now have the main parts that combine to give us the Λ parameter in the discretized Hamilto-
nian we are ultimately trying to simulate. First, we find the low-squeezing perturbative solution
(the output ket at t “ `8) to see that we are, at least, on the right track to simulating the
whole thing correctly. The output ket at t “ `8 (considering the initial pulses starts at t “ 8
and the interaction in the ring occurs at around t “ 0) is given by

|ψ8y “ |vacy ´
„

i

~

ż `8

´8

dt1HNLpt
1q



|vacy . (11)
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The only component of the Hamiltonian affecting the time integral is the exponential of the
detuning parameter, e´iΩnn1 t. We make use of some the Dirac delta function’s many wonderful
properties (specifically, the sifting and scaling properties: see Barnett and Radmore’s Methods
in Theoretical Quantum Optics, section A2.8) to do this time integral and ultimately get rid of
the integration over k4.

ż

dk fpkqδpωpkqq “
ż

dk fpkqδpvkq

“

ż dk
v
fpkqδpkq via the sifting property

“

ż dω
v
f
´ω

v
δpωq

¯

via ωpKq “ vK

“
1
v
fp0q

This means that we can write
ż `8

´8

dt e´iΩnn1 t “ 2πδpΩq (12)

which means that
vCk4 ` vPk3 ´ vSk2 ´ vSk1 “ 0 (13)

and so
k4 “

vSpk1 ` k2q ´ vPk3
vC

(14)

leaving us an integral over k1, k2 and k3.

The SFWM process we are working with involves a dual pump, with two pulses going in with
shapes defined as below. These pulse shapes replace the b operators in the original Hamiltonian.

βP pk3q “

d

NP vP τP
?
π

e´
1
2 pk3´KP q

2v2
P τ

2
P (15)

and

βCpk4q “

d

NCvCτC
?
π

e´
1
2 pk4´KCq

2v2
Cτ

2
C (16)

Using (14), this latter expression becomes

βCpk1, k2, k3q “

d

NCvCτC
?
π

exp
„

´
1

2v2
C

pvSpk1 ` k2q ´ vPk3 ´ vCKCq
2 v2

Cτ
2
C



. (17)

Now, consider the parameters γpnqJ , which are the coupling constants between a discrete mode
of the ring resonator and a continuous waveguide mode of the actual input channel at frequency
band J “ S, P,C. Using the relation

|γ
pnq
J | “

b

2vpnqJ ΓpnqJ “ γ
pnq
J (18)

and the fact that ΓpnqJ “ η
pnq
J ΓJ , we can state that

γ
pnq
J “

b

η
pnq
J

b

2vJΓJ (19)

which we shall handily plug into our integral. This gives us all the components of
ş

dtHNLptq.
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1.4 The low-gain integral in full

The low-gain integral in full is

´
i

~

ż 8

´8

dtHNLptq “ ´
i~vPγNLωSvSΓS

b

NPNCv2
P v

2
CτP τCΓPΓCηP ηC

π
?
πL

ÿ

n,n1

b

η
pnq
S

b

η
pn1q

S

ˆ

ż 8

´8

dk1dk2dk3
1

v
pnq
S pK

pnq
S ´ k1q ´ iΓS

1
v
pn1q

S pK
pn1q

S ´ k2q ´ iΓS

ˆ
1

vP pKP ´ k3q ´ iΓP
1

vSpk1 ` k2q ` vPk3 ` iΓC

ˆ exp
„

´
1
2pk3 ´KP q

2v2
P τ

2
P



exp
„

´
1

2v2
C

pvSpk1 ` k2q ´ vPk3 ´ vCKCq
2 v2

Cτ
2
C



ˆ â:nSk1
ân1Sk2 `H.c. (20)

where the sum runs over all possible combinations of the actual channels and phantom channels,
labelled ac and ph respectively. Note that the detuning parameter was absorbed by the time
integration that yielded the δ function, in (12). In the full integral, where we move out of the
low-gain regime, the detuning parameter will come back into play.

2 Deriving the squeezing matrix J

From our perturbation calculation for the expected squeezed state, we know the following:

|ψ8y “ |vacy ´
„

i

~

ż 8

´8

dtHNLptq



|vacy (21)

Consider the Taylor series expansion of the exponential function:

exprXs “
8
ÿ

n“0

rXsn

n! « I`X (22)

to 2nd order. Then, we can easily identify

|ψ8y “ |vacy ´
„

i

~

ż 8

´8

dtHNLptq



|vacy “
ˆ

I´
„

i

~

ż 8

´8

dtHNLptq

˙

|vacy (23)

and so

|ψ8y « exp
„

´
i

~

ż 8

´8

dtHNLptq



|vacy . (24)

This is equivalent to

exp
„

1
2 â
:ᵀJâ: ´H.c.



|vacy (25)

and so

1
2 â
:ᵀJâ: ´H.c. “ ´ i

~

ż 8

´8

dtHNLptq “ ´
i

~
â:ᵀMâ: `H.c. (26)

where M is obtained by carrying out the integral of the Hamiltonian over k3. Thus, we see that

J “ ´
2i
~
M (27)

4



where M is given by

Mpk1, k2q “

ż

dk3K
nn1

pk1, k2, k3qβP pk3qβCpk1, k2, k3q `H.c.

where βP and βC are defined by (15) and (16) respectively. This is how we obtain the squeezing
matrix from the k3-integral of the nonlinear SFWM Hamiltonian. Keep in mind that this is
all done with the integration over time carried out, resulting in the simplification that lets us
ignore the k4-integral – this is possible because we made an approximation with the Taylor
series to second order (and because this is really just a check on the Hamiltonian structure to
ensure we are actually getting sensible results). The ket this squeezing matrix is associated with
is just a perturbative solution and when we actually implement the calculation for the full ket,
we cannot ignore k4 and make such pleasant simplifications to make our lives easier.

3 Escaping the low-gain regime

3.1 The prefactor

It is important for us to get the prefactor right. In this section, I derive it using the contri-
butions from the interaction picture Hamiltonian, nonlinear coefficient, classical pulse shapes,
and external factors originating in the change of variables we make to recast the Hamiltonian
in terms of position-time instead of momentum-time (as we have maintained so far) and a dis-
cretization scheme for the annihilation and creation operators. We discuss the last contribution
first.

3.2 Operator discretization

The general theory of discretizing operators for computational purposes comes from QFT, start-
ing with the equations describing the Heisenberg operator, representing the free quantum scalar
field φpx, tq and then proceeding with a discretization of the momentum space. The subsequent
changes in the volume element (from continuous to discrete) and integral (to a summation over
discrete momentum modes) allows us to rewrite the field operator and use the canonical com-
mutation relation between â and â: to derive discretized versions of these operators.

Suppose âν is the general annihilation operator for a single particle state ν. Let ψν and ψ˚ν be
the ordinary first quantization-derived wavefunction (and its complex conjugate) respectively.
The, we can write the second-quantization operators for the quantum field in the real space
representation as

Ψprq “
ÿ

ν

ψνprqâν , Ψ:prq “
ÿ

ν

ψ˚ν prqâ:ν (28)

These operators are related by the commutation relation rΨpr1q,Ψ:pr2qs “ δpr1 ´ r2q. The
Heisenberg operator for the scalar field is then written as

φpx, tq “
ż d3k

p2πq3
1

?
2ωk

´

âke
´ik¨x ` â:ke

ik¨x
¯

(29)

Take a finite volume, say a cube with side length L with volume V “ L3. Then, we can discretize
momentum space by imposing k “ 2π

L n with n P Z3. The volume element d3k is now discrete,
becoming ∆k3. It is related to the volume (and thus the side length) by ∆k3 “ p2πq3

V “
`2π
L

˘3.
Hence, the integral over the infinitesimal volume element now becomes a summation over the
discrete volume element,

ż d3k

p2πq3 Ñ
ÿ ∆k3

p2πq3 “
1
V

ÿ

k

(30)
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The scalar field operator can now be rewritten in terms of this new discrete structure:

φ∆kpxq “
1
?
V

ÿ

k

1
?

2ωk

´

âke
´ik¨x ` â:ke

ik¨x
¯

(31)

where k are now discrete momenta. Recall that the usual commutation relation for the annihi-
lation and creation operators is

râpkq, â:pk1qs “ p2πq3δ3pk ´ k1q (32)

where δ is the Kronecker delta. The commutator for the respective discrete operators is easily
read off of this identity:

rak, a
:

k1s “ δkk1 (33)

and to ensure consistency with the continuous analog, we introduce a scaling by the square root
of the discrete volume element:

ak Ñ
ak

?
∆k3

(34)

Due to this scaling of the operators, the Kronecker delta for the discrete analog of the usual
commutation relation is also appropriately scaled:

δ3pk ´ k1q Ñ
δkk1

∆k3 (35)

which makes our discrete analog commutator

rak, a
:

k1s Ñ
1

∆k3 rak, a
:

k1s “
δkk1

∆k3 . (36)

Thus, our discretized annihilation and creation operators are related to their continuous analogs
by

ak “
?

∆k3âpkq or equivalently âpkq “
ak

?
∆k3

(37)

which will now find their place in our Hamiltonian integral. Note that this derivation was done
for three-dimensional space, but we will only use the one-dimensional version for our purposes;
this is achieved by neglecting the cube over the volume element and letting it remain simply as
∆k. This discretization can be visualized by splitting the plot of the resonance into intervals
separated by ∆k and writing the individual wavenumbers as kj “ j∆k `K0 where K0 is the
center of the resonance, and letting j vary from ´n to n.

3.3 Change of variables: going from momentum to a dimensionless param-
eter

We now translate our Hamiltonian from a momentum-time formulation into an integral in terms
of a new dimensionless parameter we call x. It is defined as

xJ ”
vJpk ´KJq

ΓJ
(38)

where the index J denotes the resonances S, P , and C, vJ is the group velocity in the channel
of the appropriate resonance, and KJ is the center of the resonance as previously noted. The
nonlinear coefficient contribution to the integral consists of four terms of the following basic
structure:

1
v
pnq
J pK

pnq
J ´ kq ´ iΓJ

. (39)
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Dividing through by ΓJ , we see that
1

v
pnq
J pK

pnq
J ´ kq ´ iΓJ

“ ´
1

ΓJpx` iq
. (40)

The differential elements dk1, dk2, dk3, and dk4 thus become dx1, dx2, dx3, and dx4. The
change of variables results in a contribution to the prefactor:

xJ “
vJpk ´KJq

ΓJ
ùñ kJ “

ΓJxJ
vJ

`KJ (41)

Taking the differential of both sides yields

dkJ “
ΓJ
vJ

dxJ (42)

and so there will be a factor of ΓJ
vJ

due to each of the four components making up the nonlinear
coefficient; two S resonance terms, a P resonance term, and a C resonance term. The overall
contribution to the integral prefactor from these terms is thus

ˆ

ΓS
vS

˙2 ΓP
vP

ΓC
vC

. (43)

We must also make the change of variables for the detuning parameter. Recall that it was
defined in (10). Using (38) and the center frequency equation vJKJ “ ωJ where J “ S, P,C,
we can write

Ωnn1px1, x2, x3, x4q “ vC

ˆ

ΓCx4
vC

`KC

˙

`vP

ˆ

ΓPx3
vP

`KP

˙

´vS

ˆ

ΓSx2
vS

`KS

˙

´vS

ˆ

ΓSx1
vS

`KS

˙

(44)
which simplifies to

Ωnn1px1, x2, x3, x4q “ ΓCx4 `KCvC ` ΓPx4 `KP vP ´ ΓSx2 ´ ΓSx1 ´ 2KSvS .

Using the center frequency relation, we get

Ωnn1px1, x2, x3, x4q “ ΓCx4 ` ΓPx3 ´ ΓSx2 ´ ΓSx1 ` ωC ` ωP ´ 2ωS . (45)

Note that ωP , ωC , and ωS are the center frequencies of the ring resonances, i.e. they are on
resonance with the ring. According to the resonance condition, the circumference of the ring
L “ 2πR (where R is the ring radius) is an integer multiple of the product of the wavelength
of the pulse sent in, λC , and the effective refractive index of the pulse mode in the ring neff C :

λCmC “ Lneff C .

The number for the C mode, mC , is an integer, typically taking on values between 400 to 800.
The effective index for the C mode, neff C , is typically 2 for a silicon nitride ring. Identical
relations exist for the P and S modes. Consider the quantity

ˆ

mC

neff C
`

mP

neff P
´

2mS

neff S

˙

c

R
.

This is generally non-zero since the effective refractive indices are frequency dependent due
to chromatic dispersion. Hence, neff S ‰ neff P ‰ neff C . However, if all the frequencies are
close, we can safely assume that the effective refractive indices do not change very much with
respect to each other, so we can make the approximation neff S « neff P « neff C . The quantity
´

mC
neff C

`
mP
neff P

´
2mS
neff S

¯

c
R can be rewritten to

´

mC`mP´2mS
neff

¯

c
R where neff “ neff S “ neff P “

neff C . This quantity can be taken to be zero since we can always find three integers mC ,mP ,
and mS satisfying mS `mP “ 2mS . This approximation is good for the SFWM process, so we
can take ωC ` ωP “ 2ωS . Thus, the detuning parameter is, under this approximation,

Ωnn1px1, x2, x3, x4q “ ΓCx4 ` ΓPx3 ´ ΓSpx2 ` x1q (46)
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3.4 Building the prefactor

The contributions to the prefactor are the following:

1. From Knn1 :
~2ε0

12π2L
vP vCγNLωSγ

pnq
S γ

pn1q

S γPγC (47)

2. From the interaction picture Hamiltonian prefactor:

´
3
ε0

(48)

3. From the pulse shapes:
d

NP vP τP
?
π

d

NCvCτC
?
π

(49)

4. From the change of variables:
ˆ

ΓS
vS

˙2 ΓP
vP

ΓC
vC

5. From the operator discretization:
1

?
∆k1∆k2

Putting it all together (and rewriting the γpnqJ using (18)), the final prefactor for our Hamiltonian
is

´
~2γNLωSvP vC

π
5
2 LvS

1
?

∆k1

1
?

∆k2
Γ3
SΓ

3
2
PΓ

3
2
C

a

NPNCτP τCηP ηC (50)

4 The full Hamiltonian

Putting (15) and (16) into (1), changing variables so that the integral is in terms of the di-
mensionless parameter x (via (38)), and putting the prefactor in place, we have the interaction
Hamiltonian:

´
~2γNLωSvP vCΓ3

SΓ
3
2
PΓ

3
2
C

?
NPNCτP τCηP ηC

π
5
2 LvS

?
∆k1∆k2

ˆ

ÿ

n,n1

b

η
pnq
S

b

η
pn1q

S

ż

dx1dx2dx3dx4
1

ΓS
´

x
pnq
1 ` i

¯

1
ΓS

´

x
pn1q

2 ` i
¯

1
ΓP px3 ` iq

1
ΓC px4 ` iq

ˆ

exp
“

´i
`

ΓCx4 ` ΓPx3 ´ ΓSpx2 ` x1q
˘

t
‰

exp
„

´
1
2Γ2

Px
2
3τ

2
P



exp
„

´
1
2Γ2

Cx
2
4τ

2
C



a:nSx1
a:n1Sx2

`H.c. (51)

This simplifies further to:

´
~2γNLωSvP vCΓS

a

ΓPNP τP ηP
a

ΓCNCτCηC

π
5
2 LvS

?
∆k1∆k2

ÿ

n,n1

b

η
pnq
S

b

η
pn1q

S

ż

dx1dx2dx3dx4

exp
”

´1
2Γ2

Px
2
3τ

2
P

ı

exp
”

´1
2Γ2

Cx
2
4τ

2
C

ı

exp
“

´i
`

ΓCx4 ` ΓPx3 ´ ΓSpx2 ` x1q
˘

t
‰

´

x
pnq
1 ` i

¯´

x
pn1q

2 ` i
¯

px3 ` iqpx4 ` iq

ˆ a:nSx1
a:n1Sx2

`H.c. (52)
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This is the full simplified Hamiltonian in terms of the dimensionless variable x. We make one
last change of variables by introducing the dimensionless ‘time’ parameter t “ tΓS . Hence, the
sole remaining t in the detuning parameter exponential term becomes t{Γ, yielding

´
~2γNLωSvP vCΓS

a

ΓPNP τP ηP
a

ΓCNCτCηC

π
5
2 LvS

?
∆k1∆k2

ÿ

n,n1

b

η
pnq
S

b

η
pn1q

S

ż

dx1dx2dx3dx4

exp
”

´1
2Γ2

Px
2
3τ

2
P

ı

exp
”

´1
2Γ2

Cx
2
4τ

2
C

ı

exp
”

´ i
ΓS

`

ΓCx4 ` ΓPx3 ´ ΓSpx2 ` x1q
˘

t
ı

´

x
pnq
1 ` i

¯´

x
pn1q

2 ` i
¯

px3 ` iqpx4 ` iq

ˆ a:nSx1
a:n1Sx2

`H.c. (53)

4.1 Discretizing the integral

We now discretize the integral. For numerical integration purposes, we will be transforming the
integral into a sum over discrete values of x1, x2, x3 and x4, which can be written out as

HNL “ ´
~2γNLωSvP vCΓS

a

ΓPNP τP ηP
a

ΓCNCτCηC

π
5
2 LvS

?
∆k1∆k2

∆x1∆x2∆x3∆x4
ÿ

n,n1

b

η
pnq
S

b

η
pn1q

S

nS
ÿ

i“1

nS
ÿ

j“1

nC
ÿ

k“1

nP
ÿ

l“1

ˆ
exp

”

´1
2Γ2

Px
2
3,kτ

2
P

ı

exp
”

´1
2Γ2

Cx
2
4,lτ

2
C

ı

exp
”

´ i
ΓS

`

ΓCx4,l ` ΓPx3,k ´ ΓSpx2,j ` x1,iq
˘

t
ı

´

x
pnq
1,i ` i

¯´

x
pn1q

2,j ` i
¯

px3,k ` iqpx4,l ` iq

ˆ a:nSx1,i
a:n1Sx2,j

`H.c. (54)

where the grouped indices i ” px1, sq, j ” px2, tq, k ” px3, uq, and l ” px4, vq have the
dimensionless x parameter indices as the first component and a discrete labelling as the sec-
ond component. We assume the discrete labelling indices i, j, k, l take on values from 1 to
N1, N2, N3, N4 respectively. Note: the labelling scheme here for indices has nothing to
do with the indices we will see in the next section – those come directly from [HSS]
whereas the indexing scheme here is entirely self-contained. Do not confuse the two.

Consider the relationship between the infinitesimal dimensionless x-variable and the original
infinitesimal k-variable, given by (42). We can derive the discrete version of the relation to
simplify the prefactor further:

dkJ “
ΓJ
vJ

dxJ ùñ ∆kJ “
ΓJ
vJ

∆xJ (55)

which means that

∆x1∆x2∆x3∆x4
?

∆k1∆k2
“

∆x1∆x2∆x3∆x4
b

ΓS
vS

∆x1
ΓS
vS

∆x2

“
vS

ΓS
∆x1∆x2∆x3∆x4
?

∆x1∆x2
(56)

We will generally require the spacing to be the same for each x-variable with respect to each
other. Setting ∆x “ ∆x1 “ ∆x2 “ ∆x3 “ ∆x4, we obtain

vS

ΓS
∆x1∆x2∆x3∆x4
?

∆x1∆x2
“
vS

ΓS
p∆xq4
a

p∆xq2
“
vS

ΓS
p∆xq3 (57)
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Hence, our prefactor is now

´
~2γNLωSvP vCp∆xq3

a

ΓPNP τP ηP
a

ΓCNCτCηC

π
5
2 L

. (58)

The full discrete Hamiltonian is thus

HNL “ ´
~2γNLωSvP vCp∆xq3

a

ΓPNP τP ηP
a

ΓCNCτCηC

π
5
2 L

ÿ

n,n1

b

η
pnq
S

b

η
pn1q

S

nS
ÿ

i“1

nS
ÿ

j“1

nC
ÿ

k“1

nP
ÿ

l“1

ˆ
exp

”

´1
2Γ2

Px
2
3,kτ

2
P

ı

exp
”

´1
2Γ2

Cx
2
4,lτ

2
C

ı

exp
”

´ i
ΓS

`

ΓCx4,l ` ΓPx3,k ´ ΓSpx2,j ` x1,iq
˘

t
ı

´

x
pnq
1,i ` i

¯´

x
pn1q

2,j ` i
¯

px3,k ` iqpx4,l ` iq

ˆ a:nSx1,i
a:n1Sx2,j

`H.c. (59)

5 Building the matrix rζptqs

From [HSS], we have that the matrix driving the production of photon pairs in the created
squeezed state is

rζptqsµν “ Λµνlptqrβptqsl
where Λµνlptq is the discretized nonlinear coefficient, consisting of the product of the nonlinear
coefficient Knn1 and the exponential of the detuning parameter, expr´iΩnn1ts. The discrete
indices µ and ν are defined as the groupings of indices pi, nq and pj, n1q respectively. µ indicates
a photon in the output channel n with wavenumber ki. The zeta matrix in terms of the
discretized nonlinear coefficient and pump pulses is given by

ζpx1, x2, tq “

ż

dx3dx4 Λpx1, x2, x3, x4, tqβP px3qβCpx4q (60)

We can read Λpx1, x2, x3, x4, tq off the Hamiltonian (53):

Λnn1

px1, x2, x3, x4, tq “ ´
~γNLωSvP vCp∆xq3

a

ΓPNP τP ηP
a

ΓCNCτCηC

π
5
2 L

b

η
pnq
S

b

η
pn1q

S

ˆ
exp

”

´ i
ΓS

`

ΓCx4 ` ΓPx3 ´ ΓSpx2 ` x1q
˘

t
ı

´

x
pnq
1 ` i

¯´

x
pn1q

2 ` i
¯

px3 ` iqpx4 ` iq
(61)

Then, rζptqs is simply the integral of the product of (61) and βP px3qβCpx4q with respect to the
indices x3 and x4. The reason we have ~ in the prefactor in (61) instead of ~2 as seen in (53)
is that our discrete Hamiltonian, similar to the three-indexed one in [HSS], is given by

HNLptq “ ~
ÿ

n,n1

ÿ

i,j,k,l

Λnn1

ijklptqa
:

nSx1,i
a:n1Sx2,j

βP px3,kqβCpx4,lq `H.c.. (62)

The zeta matrix is given in terms of x1, x2, and t, shown explicitly below:

ζnn
1

px1, x2, tq “ ´
~γNLωSvP vCp∆xq3

a

ΓPNP τP ηP
a

ΓCNCτCηC

π
5
2 L

b

η
pnq
S

b

η
pn1q

S

ˆ

ż

dx3dx4
exp

”

´ i
ΓS

`

ΓCx4 ` ΓPx3 ´ ΓSpx2 ` x1q
˘

t
ı

´

x
pnq
1 ` i

¯´

x
pn1q

2 ` i
¯

px3 ` iqpx4 ` iq
exp

„

´
1
2Γ2

Px
2
3τ

2
P



exp
„

´
1
2Γ2

Cx
2
4τ

2
C



(63)
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The integral is calculated numerically via the discretization procedure we did with the Hamil-
tonian. We have shown the integral version of the zeta matrix here as it is the ‘full’ relation;
one can easily read off the discretization from this. For completeness, we give the discretized
zeta matrix explicitly also:

ζnn
1

ijklpx1, x2, tq “ ´
~2γNLωSvP vCp∆xq3

a

ΓPNP τP ηP
a

ΓCNCτCηC

π
5
2 L

ÿ

n,n1

b

η
pnq
S

b

η
pn1q

S

ˆ

nJ
ÿ

i,j,k,l“1

exp
”

´1
2Γ2

Px
2
3,kτ

2
P

ı

exp
”

´1
2Γ2

Cx
2
4,lτ

2
C

ı

exp
”

´ i
ΓS

`

ΓCx4,l ` ΓPx3,k ´ ΓSpx2,j ` x1,iq
˘

t
ı

´

x
pnq
1,i ` i

¯´

x
pn1q

2,j ` i
¯

px3,k ` iqpx4,l ` iq

(64)

where we contracted the four summations into one, with nJ equal to nS over indices i and j,
and equal to nP and nC over indices k and l respectively.

The continuous zeta matrix and the discrete zeta matrix are related to each other by the
continuous lambda coefficient and the discrete lambda coefficient. One can relate the two
coefficients by writing

Λnn1

ijklpx1,i, x2,j , x3,k, x4,l, t̄q “
vS

ΓS
p∆xq3Λnn1

px1, x2, x3, x4, t̄q (65)

using the discrete version of the relation for the infinitesimal k and x elements.

5.1 Coupled operator equations for the output field

The Hamiltonian we use for numerical calculations can be written in the form

HNLptq “ ~
ÿ

µ,ν

ÿ

l

Λµνlptqa:µa:νβPβC `H.c. (66)

which is the same Hamiltonian, in principle, as (62), just slightly simplified index-wise. The
unitary time evolution operator for the system, Upt, t1q, is a solution of the Schrödinger equation:

i~
d
dtUpt, t

1q “ HUpt, t1q (67)

where Upt1, t1q “ I and H is the total Hamiltonian, given by

H “ HL `HNL (68)

We envision the unitary evolution as follows: at some very early initial time t0, the state’s
evolution is solely governed by H “ HL; that is, the contribution of HNL is sufficiently negligible
to the overall evolution at t0 since the state is, physically speaking, very far away from the ring,
where HNL is the dominant contribution to H (to the extent that HNL is deemed negligible in
the interaction region of the ring). After going into the ring and coming out, the subsequent
state is again taken to be solely under the influence of HL. For full details on the formalism used
to describe the evolution of the input state and (crucially) the initial conditions and effective
unitary operators, see [HSS]. We reproduce the essential elements (the ones we will use for
numerical implementations) of the story here. Our aim is to derive a set of coupled equations
that tell us the story of what comes out of the ring. This section is completely derived
from [HSS].
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5.2 Evolution and Gaussian Parameters

Figure 1. Schematic diagram of the ket evolution process.

The unitary time evolution operator for our system is a solution to the Schrödinger equation,

i~
dUpt, t1q

dt “ HUpt, t1q (69)

where the Hamiltonian is
H “ HL `HNL (70)

and the initial condition is Upt1, t1q “ I for all times t1. The Hamiltonian is composed of two
contributions; HL encapsulates the linear contribution, while HNL encapsulates the nonlinear
effects of the ring resonator.

We make the assumption that HL completely dominates the ket evolution from some initial
time t0 to some time t1 ă ton, where the ket is sufficiently far from the ring, and that HNL
is completely dominant on the ket evolution from some time ton to some time toff ă t2. After
this time, for a period t2 to t3, we have that HL dominates the evolution once more, with HNL
making a negligible contribution to the ket evolution as the field excitation has propagated
sufficiently far away from the ring.

Consider the evolution of a ket from t0 ă ton to t1 ą toff. By the composition property of the
unitary time evolution operator, we can write the time evolution operator from t0 to t1 as the
product of the individual time evolution operators from t0 to ton, ton to toff, and toff to t1:

Upt1, t0q “ Upton, t0qUptoff, tonqUpt1, toffq. (71)

The first and last operators on the right hand side of (71) only involve the linear Hamiltonian,
so we may immediately write

Upt1, t0q “ e´
i
~HLpton´t0qUptoff, tonqe

´ i
~HLpt1´toffq. (72)

Suppose that at time t0, an initial ket |ψpt0qy is specified. We define the input ket |ψiny:

|ψiny ” e´
i
~HLp0´t0q |ψpt0qy (73)

which says that the initial ket, starting at t “ t0, evolves to |ψiny at t “ 0 assuming HNL “ 0.
Now, specifying a ket |ψpt1qy at a time t1 ą toff, we can similarly define the output ket |ψouty:

|ψouty ” e
i
~HLpt1´0q |ψpt1qy . (74)
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The ket at t1 is given by applying the total time evolution operator Upt1, t0q to the ket at t0:

|ψpt1qy “ Upt1, t0q |ψpt0qy . (75)

which we can rewrite in terms of the input ket and the output ket as follows: defining the
operator

Upt1, t0q ” e
i
~HLt1Upt1, t0qe

´ i
~HLt0 (76)

we can write
|ψouty “ Upt1, t0q |ψiny . (77)

Taking the limit as tÑ ˘8, we have Up8,´8q “ limt1Ñ8, t0Ñ´8 Upt1, t0q and so

|ψouty “ Up8,´8q |ψiny . (78)

Choosing a restricted time range pt,´8q, i.e. starting at t “ ´8 and ending at some arbitrary
t ą ´8, we define

Uptq ” Upt,´8q. (79)

Thus, we write the output and input kets as

|ψouty “
∣∣∣ψp8qD (80)

and
|ψiny “

∣∣∣ψp´8qD (81)

respectively, where
∣∣∣ψptqD “ Uptq |ψiny. We can differentiate across this equation to obtain the

Schrödinger equation
i~

d
dt

∣∣∣ψptqD “ HNLptq
∣∣∣ψptqD (82)

where
HNLptq ” eiHLt{~HNLe

´iHLt{~ (83)

where t ranges from ´8 to 8, and as it does so, the ket goes from |ψiny to |ψouty.

6 Numerical simulation

In this section, we write the simulation of this system for variable input pump power and
duration, and describe the behaviour of the squeezing matrix with respect to these parameters.
We then focus on the output photon statistics nph,S and K – the output state’s photon number
and Schmidt number respectively. We generate plots showing the behaviour of these statistics
for the variable input parameters over a defined experimentally reasonable range, and provide an
elementary optimization to find the optimum input parameters to maximise nph,S and minimise
K, which is desirable in order to produce a single Schmidt mode squeezed state.

6.1 Building and extracting the squeezing matrix

Simulating this system requires us to define a few functions that do the heavy lifting for us.
The first of these is a function that takes in the auxiliary matrices V and W and computes
the squeezing parameter, squeezing phase, and squeezing matrix. The theory outlining the
derivation of the auxiliary matrices for this system (and other systems, as the method is quite
general) is given in Appendix B of [HSS] but for the author’s own sanity, it is summarized here.
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6.1.1 Equations for Gaussian parameters

Consider an input ket that is a coherent state in the actual input channel and a vacuum in all
others:

|ψiny “ Dbpβinq |vacy (84)

where Dbpβinq is the (unitary) displacement operator (for all the non-input channels, labelled
by b) with displacement parameter βin ” βp´8q. Let the vectors of the bosonic creation and
annihilation operators for this channel be b: and b respectively:

b “

»

—

–

b1
b2
...

fi

ffi

fl

, b: “

»

—

–

b:1
b:2
...

fi

ffi

fl

. (85)

We seek a solution to the Schrödinger equation of the form∣∣∣ψptqD “ UaptqUbptq
∣∣∣ψ̃D (86)

where
∣∣∣ψ̃D encapsulates all the non-Gaussian behaviour of the full solution ket; in effect, isolating

it. The two unitary evolution operators are

Uaptq “ SapJptqqRapφptqqeiθaptq, Ubptq “ Dapβptqqe
iθbptq (87)

and their product is simply the operator product of the squeezing, rotation, and displace-
ment operators together with the a global phase term. This follows directly from [MaRhodes],
which shows that the multimode unitary time evolution operator associated with a multimode
quadratic Hamiltonian can always be represented as this operator product, and such a repre-
sentation is unique. Each of the Gaussian parameters J, φ, and θ is subject to certain initial
conditions, and we take the initial ket

∣∣∣ψ̃p´8qD to be the vacuum. We then introduce an ef-
fective Hamiltonian Heff comprised of Hamiltonians associated with Ua (Ha) and Ub (Hb). The
former describes the generation of photon pairs by the SFWM process while the latter describes
the rate of pump amplitude (the βptq parameter) depletion. Requiring that Heff equals the
Hamiltonian HIptq which contains only non-Gaussian terms and is comprised of the auxiliary
matrices Vptq and Wptq necessitates a choice of time-dependence of the Gaussian parameters
that makes this happen – it turns out that the condition is satisfied by choosing Vptq, Wptq,
βptq, and θbptq such that

d
dtVptq “ ´2iζptqW˚ptq,

d
dtWptq “ ´2iζptqV˚ptq, i

d
dt rβptqsl “ rγptqsl and

θbptq “
1
2

ż t

´8

dt1 rγpt1qslrβ˚pt1qsl ` c.c. (88)

The zeta matrix was introduced earlier, and the vector γptq determines the rate of pump deple-
tion. The extraction of the parameters Jptq and φptq from Vptq and Wptq is explicitly shown
in [HSS Appendix C]. This is implemented in our Julia simulation by the extract J function,
which takes in the auxiliary matrices and returns the squeezing matrix, squeezing parameter,
and squeezing phase. It is reproduced in [Appendix ?].

6.2 Building the nonlinear coefficient

We construct the Λ tensor as a function of the pump photon numbers nphP , nphC , the pump
powers UP , UC , the pump durations τP , τC , and the dimensionless time parameter t̄. We
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write the prefactor, define the initial arrays for Λ and Λ0 (four-dimensional, taking complex
float inputs) and reshape the dimensionless xi parameters for broadcasting, which helps us
avoid four nested loops, saving us a large amount of time. We compute the phase term and
denominator terms, and bring them together in Λ0 by multiplying the denominator term by the
exponential of the phase term. Λ is then found by multiplying Λ0 by the appropriate terms in
ηS (the squeezed light coupling efficiency to the actual channel).

6.3 Solving the ODEs and defining the system parameters

The coupled ODEs for V and W are solved using a function (solve ode) we write that takes the
time span, pulse shapes, pulse photon numbers, pulse powers, and pulse durations and returns
the solution to the ODE problem we define using another function (ode!) nested within. The
nested function defines the vectors of the auxiliary matrices as sections (specifically, column
vectors) of a larger matrix and defines the matrices themselves as reshapes of the vectors as n
by n matrices. Using the nonlinear coefficient function, we solve for the ζ matrix by writing a
loop with respect to the two indices of the matrix and defining each element as

rζsij “ βᵀ
PΛijklβC (89)

The differential elements of V and W are defined as

dV “ ´
i

ΓS
pζ ` ζᵀqW˚ (90)

dW “ ´
i

ΓS
pζ ` ζᵀqV˚ (91)

The ODE system is then set up with the inbuilt ODEProblem function and solved with the
Tsit5 solver with tolerances of 1ˆ 10´7 and a maximum number of iterations 1ˆ 106.

We then define all the system parameters and constants with their units. They are listed with
their values in the conjoining code appendices.

6.4 The mapmaker function

We define a function that takes in all of the arguments that the aforementioned extraction,
nonlinear coefficient, and solve ODE functions feature together with the pulse shapes βP and
βC which are now explicitly defined, and returns two photon statistics: the total number of
generated photons in the squeezed state nphS and the Schmidt number of the squeezed state
K. It does this by solving the coupled ODE system for given parameter combinations of input
pulse energies UP , UC and durations τP , τC , building the squeezing matrix, and extracting the
squeezing parameters. The total number of generated photons is given by

nphS “ RepTrrW:Wsq (92)

and the Schmidt number is given by

K “
pnphSq

2
ř

psinhprqq4
(93)

We define ranges of parameter values: τP and τC go from 0.5 ns to 3.0 ns with an interval length
of l, while UP and UC go from 10 pJ to 50 pJ with an interval length of l. The variable interval
length is equivalent to the resolution of the resulting plots for nphS and K. We then write a
simple loop that runs over the indices for the duration and energy ranges respectively, solving
the ODE system for each parameter combination pτP , τC , UP , UCq. We then show the results
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for each photon statistic as heatmaps with overlaid contour plots, showing the isoclines for the
statistics with respect to the parameter combinations given. As UP and UC take on the same
values in the defined ranges (and similarly for τP and τC), we simply label the axes with the
P mode durations and energies with the values for the C mode energies and durations being
implicitly understood as being the same.

6.5 Heatmaps and contour plots

We show the resulting plots for a resolution lˆ l “ 30ˆ 30 and ranges τP , τC “ r0.0 ns, 1.0 nss,
UP , UC “ r0.0 pJ, 20.0 pJs.

(a) Heatmap for nphS . (b) Contour map for nphS .

Figure 1: Maps for nphS produced by matrixmaker.

(a) Heatmap for K. (b) Contour map for K.

Figure 2: Maps for K produced by matrixmaker.

Note that these are preliminary plots; the behaviour for τP ă 0.5 ns is unreliable and not to be
trusted!

Interpretations:
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