Building a dual pump SFWM interaction
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1 Setting up the Hamiltonian

1.1 Defining the nonlinear coefficient K™

We start with the nonlinear SFWM Hamiltonian in the interaction picture:

. 3 p .
HNL(t) _ _g Z fdk'ldedkgdk‘;l K (kl) ]{72, k37 k4)e—lﬂnn/(kl,kQ,k?,JM)t&TS &L/SkaPkgbCk4+H'c'

nSkq
| 1)
where the nonlinear coefficient K™ (ky, ko, k3, k4) is given by

Knn’ kv ko ke ks) = | d I—\ijkl Dout,i * Dout,j *Din,k‘ Din’l 9
( 1, 2, 3, 4) - r 3 (I‘) nSkl(r) n’SkQ(r) Pkg(r) Ck:4(r)‘ ( )
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We use the formulae for the asymptotic in/out displacement fields in terms of the field enhance-
ment factors, which are given by

_ L g _
Fi-(k) = VL <UJ(KJ —k) - iTJ) - Iehe ®)

for the actual input channels and

(n)*
(n) 1 s
F{ (k) = — — (4)
o VL <U<;><Kg"> — k) + irs>

for the actual output channels. For simplicity, we assume the coupling constants v, vg are
real. Then, via equations (A7) - (A9) in Phys. Rev. A 110 033709, the nonlinear coefficient
can be rewritten as

h2equpv n)* n)E
e s LES ) FSY () Fo_(hs)Fo— (k) (5)

Plugging in the formulae for the field enhancement factors and simplifying, we find that the
nonlinear coefficient is given explicitly by

Knn,(kla k27 k37 k4> =

nn’ h2 €0VPVCWSINL ’YA(S'n) ’Y.(S'n,)
K (kla ko, ks, k4) - 12721 (n) K(n) — k) —iT (n') K(n’) — ko) —iT
v (K 1) —il's vg (K 2) —il'g

: <UP(KP —%23) - iFP) <UC(KC jz4) - ZTC) ©)

1.2 Defining the detuning parameter (2,

Now for the detuning term. We use the dispersion relation for the channels,
wy(k) =ws+vsk— Kj) (7)

where wj is the center frequency of the resonance J, vy is the group velocity in the channel,
and K j is the wavenumber for the light in either channel with frequency wy, i.e. the center of
the appropriate resonance. We are given that

Qs (K1, k2, k3, ka) = woky, + Wpky — Wi/ Sky — WnSk, - (8)

Using the dispersion relation, we can write the detuning parameter explicitly in terms of the
group velocities and wavenumbers:

Qs (1, k2, k3, k) = wo+wp—2ws+ve(ka—Ke)+vp(ks—Kp)—vs(ka—Ks)—vs(k1—Kg). (9)
Now, note that v;K; = wj, the center frequency. Hence, the expression for €,/ simplifies to

Qs (k1, ko, k3, ky) = voky + vpks — vgka — vgk. (10)

1.3 Putting K™ and Q,, together: checking the low-gain solution

We now have the main parts that combine to give us the A parameter in the discretized Hamilto-
nian we are ultimately trying to simulate. First, we find the low-squeezing perturbative solution
(the output ket at ¢ = +00) to see that we are, at least, on the right track to simulating the
whole thing correctly. The output ket at ¢ = +00 (considering the initial pulses starts at ¢ = oo
and the interaction in the ring occurs at around ¢ = 0) is given by

ooy = [vac) — H F: dt'HNL(t/)] vac). (1)
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The only component of the Hamiltonian affecting the time integral is the exponential of the
detuning parameter, e~**n'*. We make use of some the Dirac delta function’s many wonderful
properties (specifically, the sifting and scaling properties: see Barnett and Radmore’s Methods
in Theoretical Quantum Optics, section A2.8) to do this time integral and ultimately get rid of
the integration over ky.

fdkf@mxw%»:=fdkf@»avm
= %f(k)é(k‘) via the sifting property

- def (gé(w)) via w(K) = vK

v v
1
= —f(0
1)
This means that we can write o
J dt e ®tn't — 275(Q) (12)
—0
which means that
voky + vpks — vgko —vgky =0 (13)

and so L L L
k;4:US(1+ 2) — vpks (14)
vc

leaving us an integral over ki, ko and ks.

The SFWM process we are working with involves a dual pump, with two pulses going in with
shapes defined as below. These pulse shapes replace the b operators in the original Hamiltonian.

Bp(ks) = /Nzi}we—;wg_@)zv;n% (15)
T
Nc’l)cTC —l(k _K )211272
Bc(/{?4) = Te 2 \R4 C c'c (16)
s

Using (14), this latter expression becomes

and

NeoveT
/BC(k17k27k3) = wex |:

VT

1
_% (vs(k1 + k2) — vpks — UcKc)2 U%Tg} . (17)

Now, consider the parameters ’ygn), which are the coupling constants between a discrete mode

of the ring resonator and a continuous waveguide mode of the actual input channel at frequency
band J = S, P,C. Using the relation

57 = V205 TS = (18)

and the fact that an) = ngn)f J, we can state that

7§ = W \/205T; (19)

which we shall handily plug into our integral. This gives us all the components of {dt Hny,(t).



1.4 The low-gain integral in full

The low-gain integral in full is

i [ ihvpﬁNstvsfs*\/ NpNcvpvgtprel pLenpic (n), /. (n')
2 f dt Hy(t) = — /7L 2, \/E\/;

© 1 1
X J dk?ldkizdk‘;g n) ) — (") () —
—o0 vy (K¢’ — k1) —il'svg "(Kg ' — ko) —il's
1 1
vp(Kp —k3) — ilp vs (k1 + ko) + vpks + ilc

1
(ks — KP)QUJQDT]%] exp [—202 (vs(k1 + ko) — vpks — veKe)? U?}T(QJ]
C

n,n’

X

[ 1
X exp —5

X &) gy, Anrsk, + Heeo (20)

where the sum runs over all possible combinations of the actual channels and phantom channels,
labelled ac and ph respectively. Note that the detuning parameter was absorbed by the time
integration that yielded the ¢ function, in (12). In the full integral, where we move out of the
low-gain regime, the detuning parameter will come back into play.

2 Deriving the squeezing matrix J

From our perturbation calculation for the expected squeezed state, we know the following;:

oy = [vac) — [h [ a HNLu)} [vac) (21)

Consider the Taylor series expansion of the exponential function:

[X]"
n!

explX] - 3

n=0

~[+ X (22)

to 2nd order. Then, we can easily identify

oo = [vach — [; f - dtHNL(t)} Ivac) — (]1— {;L J ’ dtHNL(t)D vac)  (23)

—o0 —Q0
and so
,[: o0
[y ~ exp [_hf dt HNL(t)] [vac) . (24)
—0
This is equivalent to
Loit g4t
exp | 5 TJa" —H.c.| |vac) (25)
and so
Lotr ot i izt
—a'TJa' —H.c. = —— dt Hyp(t) = ——a'TMa' + H.c. (26)
2 hJ)_o h

where M is obtained by carrying out the integral of the Hamiltonian over k3. Thus, we see that

2
-2 M 2
J=-7 (27)



where M is given by
M (k1 ko) = Jdkzg K™ (ky, ka, k3)Bp(ks) Bo (K, ka, ks) + H.c.

where Sp and B¢ are defined by (15) and (16) respectively. This is how we obtain the squeezing
matrix from the ks-integral of the nonlinear SFWM Hamiltonian. Keep in mind that this is
all done with the integration over time carried out, resulting in the simplification that lets us
ignore the k4-integral — this is possible because we made an approximation with the Taylor
series to second order (and because this is really just a check on the Hamiltonian structure to
ensure we are actually getting sensible results). The ket this squeezing matrix is associated with
is just a perturbative solution and when we actually implement the calculation for the full ket,
we cannot ignore k4 and make such pleasant simplifications to make our lives easier.

3 Escaping the low-gain regime

3.1 The prefactor

It is important for us to get the prefactor right. In this section, I derive it using the contri-
butions from the interaction picture Hamiltonian, nonlinear coefficient, classical pulse shapes,
and external factors originating in the change of variables we make to recast the Hamiltonian
in terms of position-time instead of momentum-time (as we have maintained so far) and a dis-
cretization scheme for the annihilation and creation operators. We discuss the last contribution
first.

3.2 Operator discretization

The general theory of discretizing operators for computational purposes comes from QFT, start-
ing with the equations describing the Heisenberg operator, representing the free quantum scalar
field ¢(x,t) and then proceeding with a discretization of the momentum space. The subsequent
changes in the volume element (from continuous to discrete) and integral (to a summation over
discrete momentum modes) allows us to rewrite the field operator and use the canonical com-
mutation relation between @ and a' to derive discretized versions of these operators.

Suppose a, is the general annihilation operator for a single particle state v. Let 1, and ] be
the ordinary first quantization-derived wavefunction (and its complex conjugate) respectively.
The, we can write the second-quantization operators for the quantum field in the real space

representation as
U(r) = D (r)a, Vir) =) vir)a) (28)

These operators are related by the commutation relation [¥(ry), ¥(ry)] = 6(r; — r2). The
Heisenberg operator for the scalar field is then written as

Pk 1 etk
¢(X7t) - J (27_‘_)3 T(.Uk (ake + ake ) (29)

Take a finite volume, say a cube with side length L with volume V = L3. Then, we can discretize
momentum space by imposing k = %’Tn with n € Z3. The volume element d3k is now discrete,

becoming Ak3. Tt is related to the volume (and thus the side length) by Ak? = (2‘7;)3 = (2%)3

Hence, the integral over the infinitesimal volume element now becomes a summation over the

discrete volume element,
d3k AE? 1
J @ T v% (30)




The scalar field operator can now be rewritten in terms of this new discrete structure:

1 1 —ika At ik
Dar(x) = —= >, ——— (e " + af ™) (31)
VV S 2wy
where k£ are now discrete momenta. Recall that the usual commutation relation for the annihi-
lation and creation operators is

[a(k),a’ (k)] = (2m)°8°(k — ) (32)

where 0 is the Kronecker delta. The commutator for the respective discrete operators is easily
read off of this identity:

[a, al,] = g (33)

and to ensure consistency with the continuous analog, we introduce a scaling by the square root

of the discrete volume element: a
k

VAE3

Due to this scaling of the operators, the Kronecker delta for the discrete analog of the usual
commutation relation is also appropriately scaled:

ap —

(34)

5k — k') — Zfl’;; (35)

which makes our discrete analog commutator

1 Ortr
T tq _ Ykk
[ak?a’k/] - AkS [ak?ak/] - AkS (36)

Thus, our discretized annihilation and creation operators are related to their continuous analogs

by
ay

VAE3

which will now find their place in our Hamiltonian integral. Note that this derivation was done
for three-dimensional space, but we will only use the one-dimensional version for our purposes;
this is achieved by neglecting the cube over the volume element and letting it remain simply as
Ak. This discretization can be visualized by splitting the plot of the resonance into intervals
separated by Ak and writing the individual wavenumbers as k; = jAk + Ky where Ky is the
center of the resonance, and letting j vary from —n to n.

ar = VAK3a(k) or equivalently a(k) = (37)

3.3 Change of variables: going from momentum to a dimensionless param-
eter

We now translate our Hamiltonian from a momentum-time formulation into an integral in terms
of a new dimensionless parameter we call z. It is defined as

_ vk - Kj)

= 38
vy = (38)

where the index J denotes the resonances S, P, and C, vy is the group velocity in the channel
of the appropriate resonance, and K ; is the center of the resonance as previously noted. The
nonlinear coefficient contribution to the integral consists of four terms of the following basic

structure: 1

oK — k) —iT,

(39)



Dividing through by I';, we see that

1 1
(n) (7 = - T N (40)
oKV — k) —iTy a4+
The differential elements dki, dks, dks, and dk4 thus become dxq, dzo, dzs, and dxy. The
change of variables results in a contribution to the prefactor:
k—K T
J = 71”( = J) = kj = L + K (41)
FJ vJj

Taking the differential of both sides yields

T
dky = Jd.ﬁl?] (42)
vJ

and so there will be a factor of % due to each of the four components making up the nonlinear
coefficient; two S resonance terms, a P resonance term, and a C resonance term. The overall

contribution to the integral prefactor from these terms is thus
— 2 J— —
r I'pl
(S) I'rlec (43)
vs vp vo
We must also make the change of variables for the detuning parameter. Recall that it was

defined in (10). Using (38) and the center frequency equation v;K; = wy where J = S, P,C,
we can write

Qp (21, 2, 73, 24) = VO ( CcTq n KC> +op ( PI3 n KP) _vg < ST2 n KS) g < ST1 N KS>

vo vp Vg vg
(44)
which simplifies to
Qo (1‘1, T9, X3, (l:4) = ch4 + Kove + fpx4 + Kpvp — fsl’g — fsxl — 2K gvg.
Using the center frequency relation, we get
an/(wl, T9, X3, .21?4) = fc.1‘4 + Tp.l‘g — fs.ﬁlfg - Tgxl + we + wp — 2wg. (45)

Note that wp, we, and wg are the center frequencies of the ring resonances, i.e. they are on
resonance with the ring. According to the resonance condition, the circumference of the ring
L = 27 R (where R is the ring radius) is an integer multiple of the product of the wavelength
of the pulse sent in, A\¢, and the effective refractive index of the pulse mode in the ring neg ¢:

Aeme = Lneg -

The number for the C' mode, m¢, is an integer, typically taking on values between 400 to 800.
The effective index for the C' mode, neg ¢, is typically 2 for a silicon nitride ring. Identical
relations exist for the P and S modes. Consider the quantity

( me_, mp 2mg ) c
Nefc MNeft P Neffs) R

This is generally non-zero since the effective refractive indices are frequency dependent due
to chromatic dispersion. Hence, neg s # et p # Nef ¢. However, if all the frequencies are
close, we can safely assume that the effective refractive indices do not change very much with
respect to each other, so we can make the approximation neg g & negg p & neg ¢ The quantity

mc mp _ 2mg \ c . mgc+mp—2ms \ ¢ _ _ _
(ncﬂc + renp nd{g) £ can be rewritten to (7%3 ) 7 where neff = Neff 5 = Neff p =
nef ¢. This quantity can be taken to be zero since we can always find three integers m¢, mp,
and mg satisfying mg + mp = 2mg. This approximation is good for the SEWM process, so we

can take wg + wp = 2wg. Thus, the detuning parameter is, under this approximation,

an/(xl, 2,3, 1‘4) = fcl‘4 + fpl‘g — fg(xg + 1‘1) (46)



3.4 Building the prefactor

The contributions to the prefactor are the following;:

1. From K™
h2eo
L wpucTNLwsTS VS vPe (47)
1272 L
2. From the interaction picture Hamiltonian prefactor:
3
_ 2 48
. (45)
3. From the pulse shapes:
Np’l)pr chc’l'c (49)
)\/7

4. From the change of variables:
Fs\*TrTe
vs ) vp Ve
_
v Ak Ako
(n)

Putting it all together (and rewriting the ;" using (18)), the final prefactor for our Hamiltonian
is

5. From the operator discretization:

B hQWNLvap’UC 1

1 _—3_3_3
I'cI'2T2+/ NpNoTpTenpne 50
ries VAR VAR STV e (50)

4 The full Hamiltonian

Putting (15) and (16) into (1), changing variables so that the integral is in terms of the di-
mensionless parameter = (via (38)), and putting the prefactor in place, we have the interaction
Hamiltonian:

h ’yNngvvaFSF FC\/NPNCTPTCUPUC

T2 £v5\/ Ak‘lAk’Q

Z F\/;deld«??degdeL 1 — 1 1 1 y

((N) )Fg(x(n) )f p(rs+1i)To (2g + 1)
t]

exp [ (Fcl'4 + Fpl’3 — Fs(l'g + I )

—2 .
exp [—21“1:363712:] exp [—2ch?n%] aLleaL,Sm +He (51)

This simplifies further to:

h%5 Ts\/TpN. TN, /
_ "yNLwsvpve 55\/ pNpTenPy/Te CTCUCZ /ngn) /nfq")de1dx2dx3dx4
n,n’

w2 Logy/ Ak1Ako
=2 =2 . (= = =
exp [—%prgq-]%] exp [—%chiTé] exp [—z (I‘C:c4 + I'prs —Tg(ze + xl)) t]

(m&n) + z) (:Uénl) + z) (x3 + 1) (g +17)

x al aT,SI2 + H.c. (52)

nSx1 - n



This is the full simplified Hamiltonian in terms of the dimensionless variable x. We make one
last change of variables by introducing the dimensionless ‘time’ parameter ¢ = ¢tI'g. Hence, the
sole remaining ¢ in the detuning parameter exponential term becomes ¢/T", yielding

2= T TrN ToN, n n’
_ hAnLwsvpue 5\/ pNprpnpy/TeNetene Z W\/@demmdmdm
w2 Lugy/ Ak Aky !

exp [—%prgrl%] exp [—%FCxZTé] exp [—%S (Tcas + Tpry —Ts(z2 + 1)) t]

(.Tgn) + z) (.”L’én/) + z) (x3 + 1) (g +17)

X aLleaL,SIQ + H.c. (53)

4.1 Discretizing the integral

We now discretize the integral. For numerical integration purposes, we will be transforming the
integral into a sum over discrete values of x1, x2, x3 and x4, which can be written out as

Wy wsvpvelsA/ T pNpT ToNeT " n
Hyp = - INL9SUPYC ;\/ pNprpp\/Te CcnchlAmzAngmZ\/E [)
w2 Lugy/ Ak1Aksy n.n'

ng ng ng np

)IDIPII

i=1j=1k=11=1

2 =2 S _ B .
exp [—%prg,m%] exp [—%chiﬂé] exp [—i (Toway + Tpagp — Ts(wa + 21,)) t]
(xgnz) + z) (xg”]’) + z) (231 + 1) (24 + 1)

f
x a’TLS{L'Li

X

aL/ng’j + H.C. (54)

where the grouped indices i = (z1,s), j = (x2,t), k = (x3,u), and | = (x4,v) have the
dimensionless x parameter indices as the first component and a discrete labelling as the sec-
ond component. We assume the discrete labelling indices ¢, j, k,l take on values from 1 to
N1, No, N3, N4 respectively. Note: the labelling scheme here for indices has nothing to
do with the indices we will see in the next section — those come directly from [HSS]
whereas the indexing scheme here is entirely self-contained. Do not confuse the two.

Consider the relationship between the infinitesimal dimensionless z-variable and the original
infinitesimal k-variable, given by (42). We can derive the discrete version of the relation to
simplify the prefactor further:

T T
dky = —Ldz; = Aky = LAz, (55)
Vg Vg

which means that

Ar1AroArsAxry  Ax1AxrgAxsAzy vs Ar1AzoAr3Axy

A\ Ak‘lAkz B gAxlfiAx2 B fs \/A.’L'lA.fUQ
vg vg

(56)

We will generally require the spacing to be the same for each z-variable with respect to each
other. Setting Az = Azx; = Axe = Axs = Axy, we obtain

EA@A@A&;AJ&; vs (Az)* _ s

Ts Az Az,  Ts+/(Az)2 Ts

(Az)? (57)



Hence, our prefactor is now

 PPynpwsvpve(Ax 3\/TPNPTP77P\/FCNCTC770
7T2C

The full discrete Hamiltonian is thus

Har - h AnLwsvpve (Az 3\/FPNPTP77P\/FCNCTC770 Z rmi nZS: ”zc: %

7r2£ i=1j=1k=11=1

exp [_%fpx:%,m%] exp [_%fowiz%] exp [_i (fcm,z +Tpagy — Ts(ra, + 71,)) f]
(;gg”l) + z) (a:g"]/) + z) (23 + ) (T4 + 1)
i T
X a a -+ H.c. (59)

nSwy ; n/Swa

X

5 Building the matrix [{()]

From [HSS], we have that the matrix driving the production of photon pairs in the created
squeezed state is

(€] = A (D) [B(H)]:

where A,,(t) IS the discretized nonlinear coefficient, consisting of the product of the nonlinear
coefficient K™ and the exponential of the detuning parameter, exp[—if,,st]. The discrete
indices p and v are defined as the groupings of indices (4, n) and (j,n') respectively. p indicates
a photon in the output channel n with wavenumber k;. The zeta matrix in terms of the
discretized nonlinear coefficient and pump pulses is given by

Clar, w0, t) = Jd333d964A(1171,$2,$3,$47t)5P($3)50($4) (60)

We can read A(z,x2, 23, 24,t) off the Hamiltonian (53):

_ Iynpwsvpve (Az )T pNprpnp\/TeNetene / /
3L
exp [——— (fca:4 + fpajg — fs(&?g + .731)) f]

< (n) 4 z) (:an/) + Z) (w3 + 1) (24 + 1)

Then, [¢(t)] is simply the integral of the product of (61) and Sp(z3)Bc(x4) with respect to the
indices x3 and z4. The reason we have & in the prefactor in (61) instead of h? as seen in (53)
is that our discrete Hamiltonian, similar to the three-indexed one in [HSS], is given by

HNL = hZ Z Azﬁcl nSx11 L’sz ﬁP(xS k:)BC(xéll) + H.c.. (62)
n,n' i,7,k,l

A" (21, 9, 3, 24, ) =

x (61)

The zeta matrix is given in terms of x1, 2, and ¢, shown explicitly below:

_ MynLwsvpve (Az) \/FPNPTPUP\/FCNCTCHC \/7\/(7
3L
exp |:—f27$ (fcfl?4 + f1:’:1:‘3 - FS<$2 + 1'1)) %

(xgn) + z) (xén/) + Z) (x3 + 1) (g + 1)

Cnn/ (mly o, t) =

1— 1—
% Jd$3d$4 exp [—2F§3$§7'123] exp [—21“?;:@%73]

(63)
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The integral is calculated numerically via the discretization procedure we did with the Hamil-
tonian. We have shown the integral version of the zeta matrix here as it is the ‘full’ relation;
one can easily read off the discretization from this. For completeness, we give the discretized
zeta matrix explicitly also:

/ AN wsvpve (A 3\/prpr7713\/ch07'0770 / [
C{ngl(a?la fL‘Q,t) _ NL ( ) §£ Z nén) né’n)
T2 n,n’

=2 =2 o = = -
nJ o exp [—%pré,m%] exp [—%chiﬂg] exp [—i (ch4,l +Tpasy —Is(za; + x“)) t]
X

ijikl=1 (azgt? + z) (acg?]/) + z) (3 +1)(zay + 1)
(64)

where we contracted the four summations into one, with n; equal to ng over indices 7 and j,
and equal to np and n¢ over indices k and [ respectively.

The continuous zeta matrix and the discrete zeta matrix are related to each other by the
continuous lambda coefficient and the discrete lambda coefficient. One can relate the two
coefficients by writing

/ vs ! t
Ak (21, 22,5, 3 8y Ta05 ) = Ti(Aw)BA"" (1, 22, 73, T4, 1) (65)
s

using the discrete version of the relation for the infinitesimal £ and x elements.

5.1 Coupled operator equations for the output field

The Hamiltonian we use for numerical calculations can be written in the form

Hyi(t) = Y)Y Aua(t)af,al BpBo + Hee. (66)
IR

which is the same Hamiltonian, in principle, as (62), just slightly simplified index-wise. The
unitary time evolution operator for the system, U(¢, '), is a solution of the Schrodinger equation:

d
ih&U(t, t')y = HU(t,t) (67)

where U(t',t') = I and H is the total Hamiltonian, given by
H = H;, + HNL (68)

We envision the unitary evolution as follows: at some very early initial time tg, the state’s
evolution is solely governed by H = Hy; that is, the contribution of Hyy, is sufficiently negligible
to the overall evolution at t( since the state is, physically speaking, very far away from the ring,
where Hyyp, is the dominant contribution to H (to the extent that Hyy, is deemed negligible in
the interaction region of the ring). After going into the ring and coming out, the subsequent
state is again taken to be solely under the influence of Hy,. For full details on the formalism used
to describe the evolution of the input state and (crucially) the initial conditions and effective
unitary operators, see [HSS]. We reproduce the essential elements (the ones we will use for
numerical implementations) of the story here. Our aim is to derive a set of coupled equations
that tell us the story of what comes out of the ring. This section is completely derived
from [HSS].
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5.2 Evolution and Gaussian Parameters

Figure 1. Schematic diagram of the ket evolution process.

The unitary time evolution operator for our system is a solution to the Schrédinger equation,

AUt 1)

h—2"2 = HU(t,t
ih— Ut t) (69)

where the Hamiltonian is
H = HL + HNL (70)

and the initial condition is U(t',¢') = I for all times t’. The Hamiltonian is composed of two
contributions; Hi, encapsulates the linear contribution, while Hyr, encapsulates the nonlinear
effects of the ring resonator.

We make the assumption that H; completely dominates the ket evolution from some initial
time tg to some time t; < ton, where the ket is sufficiently far from the ring, and that Hyt,
is completely dominant on the ket evolution from some time to, to some time t,g < to. After
this time, for a period ¢y to t3, we have that Hy, dominates the evolution once more, with Hyy,
making a negligible contribution to the ket evolution as the field excitation has propagated
sufficiently far away from the ring.

Consider the evolution of a ket from ty < to, to t1 > tog. By the composition property of the
unitary time evolution operator, we can write the time evolution operator from ty to t; as the
product of the individual time evolution operators from ty to ton, ton t0O tof, and tog to t1:

U(tht()) = U(tomtO)U(toﬁvton)U(thtoﬁ)- (71)

The first and last operators on the right hand side of (71) only involve the linear Hamiltonian,
so we may immediately write

Ulty, to) = ef%‘HL(tonftO)U(toff? ton)e*%HL(tlftofr) ) (72)

Suppose that at time tg, an initial ket |¢(tp)) is specified. We define the input ket |1, ):

Wiy = e w00 (1) (73)

which says that the initial ket, starting at ¢ = g, evolves to |1, at ¢ = 0 assuming Hyy, = 0.
Now, specifying a ket [¢)(t1)) at a time ¢; > tog, we can similarly define the output ket |1out):

Woury = en TL170) | (1)), (74)
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The ket at ¢; is given by applying the total time evolution operator U(t1, %) to the ket at to:

[Ph(t1)) = U(t1, to) [¥(t0)) - (75)

which we can rewrite in terms of the input ket and the output ket as follows: defining the
operator

Ut to) = en LT (1, t)e ™ HLto (76)
we can write
|wout> = U(tl, t(]) |win> . (77)
Taking the limit as ¢ — +o0, we have U (00, —00) = limy, 00, t;——o0 U(t1,%0) and so
|¢out> = u(oov _OO) |¢in>- (78)
Choosing a restricted time range (¢, —00), i.e. starting at ¢ = —o0 and ending at some arbitrary
t > —oo, we define
Ut) =U(t, —). (79)

Thus, we write the output and input kets as

[ousy = [B(0)) (80)

and

[iny = [B(=00)) (81)

respectively, where W(t» = U(t) |tin). We can differentiate across this equation to obtain the
Schrédinger equation

i [(0)) = e (1) [0 (82)

where ‘ 4
FNL(t) = eZHLt/fLHNLeleLt/ﬁ (83)

where ¢ ranges from —oo to o0, and as it does so, the ket goes from |1)i,) to |[tout)-

6 Numerical simulation

In this section, we write the simulation of this system for variable input pump power and
duration, and describe the behaviour of the squeezing matrix with respect to these parameters.
We then focus on the output photon statistics npn s and K — the output state’s photon number
and Schmidt number respectively. We generate plots showing the behaviour of these statistics
for the variable input parameters over a defined experimentally reasonable range, and provide an
elementary optimization to find the optimum input parameters to maximise npy ¢ and minimise
K, which is desirable in order to produce a single Schmidt mode squeezed state.

6.1 Building and extracting the squeezing matrix

Simulating this system requires us to define a few functions that do the heavy lifting for us.
The first of these is a function that takes in the auxiliary matrices V and W and computes
the squeezing parameter, squeezing phase, and squeezing matrix. The theory outlining the
derivation of the auxiliary matrices for this system (and other systems, as the method is quite
general) is given in Appendix B of [HSS] but for the author’s own sanity, it is summarized here.
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6.1.1 Equations for Gaussian parameters

Consider an input ket that is a coherent state in the actual input channel and a vacuum in all
others:

|¥in) = Dy(Bin) [vac) (84)

where Dy(B;,) is the (unitary) displacement operator (for all the non-input channels, labelled
by b) with displacement parameter B;, = B(—). Let the vectors of the bosonic creation and
annihilation operators for this channel be bf and b respectively:

by bl
b=|b2|, bl=]|0]. (85)

We seek a solution to the Schrodinger equation of the form
[0(t)) = Ua(t)Us(8) | ) (86)

where ‘1@ encapsulates all the non-Gaussian behaviour of the full solution ket; in effect, isolating
it. The two unitary evolution operators are

Ua(t) = Sa(J(0) Ra(d(t)e V), Uy(t) = Da(B(2))e (87)

and their product is simply the operator product of the squeezing, rotation, and displace-
ment operators together with the a global phase term. This follows directly from [MaRhodes],
which shows that the multimode unitary time evolution operator associated with a multimode
quadratic Hamiltonian can always be represented as this operator product, and such a repre-
sentation is unique. Each of the Gaussian parameters J, ¢, and 6 is subject to certain initial
conditions, and we take the initial ket ’d?(—oo)} to be the vacuum. We then introduce an ef-

fective Hamiltonian Heg comprised of Hamiltonians associated with U, (H,) and Uy (Hp). The
former describes the generation of photon pairs by the SFWM process while the latter describes
the rate of pump amplitude (the B(t) parameter) depletion. Requiring that H.g equals the
Hamiltonian Hi(¢) which contains only non-Gaussian terms and is comprised of the auxiliary
matrices V(t) and W(t) necessitates a choice of time-dependence of the Gaussian parameters
that makes this happen — it turns out that the condition is satisfied by choosing V(t), W (t),
B(t), and y(t) such that

SV = 2COW ), LW = 2OV, i p801 = Py(O) and
00 =5 |t s O + e (59)

The zeta matrix was introduced earlier, and the vector «(¢) determines the rate of pump deple-
tion. The extraction of the parameters J(¢) and ¢(t) from V(t) and W (¢) is explicitly shown
in [HSS Appendix C]. This is implemented in our Julia simulation by the extract_J function,
which takes in the auxiliary matrices and returns the squeezing matrix, squeezing parameter,
and squeezing phase. It is reproduced in [Appendix 7].

6.2 Building the nonlinear coefficient

We construct the A tensor as a function of the pump photon numbers nphp, nph, the pump
powers Up, Ug, the pump durations 7p, 7, and the dimensionless time parameter t. We
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write the prefactor, define the initial arrays for A and Ag (four-dimensional, taking complex
float inputs) and reshape the dimensionless x; parameters for broadcasting, which helps us
avoid four nested loops, saving us a large amount of time. We compute the phase term and
denominator terms, and bring them together in Ay by multiplying the denominator term by the
exponential of the phase term. A is then found by multiplying Ay by the appropriate terms in
ns (the squeezed light coupling efficiency to the actual channel).

6.3 Solving the ODEs and defining the system parameters

The coupled ODEs for V and W are solved using a function (solve_ode) we write that takes the
time span, pulse shapes, pulse photon numbers, pulse powers, and pulse durations and returns
the solution to the ODE problem we define using another function (ode!) nested within. The
nested function defines the vectors of the auxiliary matrices as sections (specifically, column
vectors) of a larger matrix and defines the matrices themselves as reshapes of the vectors as n
by n matrices. Using the nonlinear coefficient function, we solve for the ¢ matrix by writing a
loop with respect to the two indices of the matrix and defining each element as

[€lij = BpAiymBe (89)

The differential elements of V and W are defined as

AV — — (¢ + cyW* (90)
I's

AW = — (¢ + ¢T)V* (91)
I's

The ODE system is then set up with the inbuilt ODEProblem function and solved with the
Tsit5 solver with tolerances of 1 x 107 and a maximum number of iterations 1 x 10°.

We then define all the system parameters and constants with their units. They are listed with
their values in the conjoining code appendices.

6.4 The mapmaker function

We define a function that takes in all of the arguments that the aforementioned extraction,
nonlinear coefficient, and solve ODE functions feature together with the pulse shapes Sp and
B¢ which are now explicitly defined, and returns two photon statistics: the total number of
generated photons in the squeezed state npns and the Schmidt number of the squeezed state
K. It does this by solving the coupled ODE system for given parameter combinations of input
pulse energies Up, Uco and durations 7p, 7¢, building the squeezing matrix, and extracting the
squeezing parameters. The total number of generated photons is given by

npns = Re(Tr[WIWY]) (92)
and the Schmidt number is given by

W (nphs)’ (93)

> (sinh(r))*
We define ranges of parameter values: 7p and 7¢ go from 0.5 ns to 3.0 ns with an interval length
of [, while Up and Ug go from 10 pJ to 50 pJ with an interval length of I. The variable interval
length is equivalent to the resolution of the resulting plots for npng and K. We then write a
simple loop that runs over the indices for the duration and energy ranges respectively, solving
the ODE system for each parameter combination (7p,7¢, Up,Uc). We then show the results
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for each photon statistic as heatmaps with overlaid contour plots, showing the isoclines for the
statistics with respect to the parameter combinations given. As Up and Ug take on the same
values in the defined ranges (and similarly for 7p and 7¢), we simply label the axes with the
P mode durations and energies with the values for the C mode energies and durations being
implicitly understood as being the same.

6.5 Heatmaps and contour plots

We show the resulting plots for a resolution [ x [ = 30 x 30 and ranges 7p, 7¢ = [0.0 ns, 1.0 ns|,
Up,Uc = [0.0 pJ,20.0 pJ].
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(a) Heatmap for nphs. (b) Contour map for npng.
Figure 1: Maps for n,,s produced by matrixmaker.
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Figure 2: Maps for K produced by matrixmaker.

Note that these are preliminary plots; the behaviour for 7p < 0.5 ns is unreliable and not to be
trusted!

Interpretations:
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