The iron curtain of gravitational collapse
A review of the cosmic censorship conjectures

Dharmik Patel

1 Introduction

Stephen Hawking and Roger Penrose presented the current picture of gravitational collapse in
their seminal 1970 paper | ]. They formulated that for bodies with too much mass con-
centrated within too small a volume, there is a collapse process that is unstoppable, eventually
leading to the creation of a singularity in the structure of spacetime. Physically, the idea of
such a singularity strictly occurring in nature is predicated on the assumption that the laws of
quantum mechanics do not intervene in a change of the structure of spacetime that the general
theory of relativity (GR) classically describes. In our context, a singularity refers to a region
where our conventional classical description of spacetime is no longer applicable.! The standard
picture of collapse to a black hole [ | says that the singularity is not visible to distant ob-
servers because it is hidden, in a manner of speaking, by an absolute event horizon. This means
that whatever physics happens at the singularity is not accessible by such an observer. This is
the ‘censorship’ we are so interested in.

2 Preliminary concepts

We first understand where we are working and what we are working with. Recall that a
spacetime (M, g) is a (3 + 1)-dimensional manifold equipped with the Lorentzian metric g,
which is a symmetric and nondegenerate bilinear form defined on V), x V,, where V}, is the
tangent space to the manifold at a point p € M. The signature of the metric is (—, +, +, +).
The most basic example is that of Minkowski spacetime (R3*1, 1), equipped with the metric

p=ds* = —dt? + dz? + dy* + dz% (1)

The metric of a spacetime defines a light cone on the tangent space of each point (i.e. an event)
on the manifold; a vector belonging to this tangent space can be classified as follows | |:

Definition 1 (Timelike, lightlike, spacelike). A vector X in the tangent space of a point on
(M, g) is classified as

o Timelike: g(X,X) < 0.
o Lightlike/null: g(X,X) =0
o Spacelike: g(X,X) >0

Observers in free-fall follow timelike or null geodesics, since the upper bound on the speed of
information travel is the speed of light.

'We would normally expect this to happen only when we’re dealing with radii of curvature on the scale of the
Planck length.



2.1 Some essential definitions

The following definitions are due to Carroll | |:

Definition 2 (Causal curves). A curve (not necessarily a geodesic) that is either timelike or
null is called a causal curve.

Definition 3 (Causal futures/pasts and chronological futures/pasts). Let S be a subset of M.
The causal future of S (denoted J*(S)) is the set of points reachable from S wia a future-
directed causal curve. The chronological future 17 (S) is a restriction of this; it is the set of
points reachable by a future-directed timelike curve. The causal past J~ and chronological past
I~ are similarly defined, but for past-directed causal and timelike curves respectively.

Definition 4 (Achronal sets). S © M is achronal if there do not exist any two points p,q in S
such that p and q can be connected by some timelike curve.

Definition 5 (Future/past domain of dependence). Let S be a closed achronal set. The future
domain of dependence of S, denoted D" (S), is the set of all points p such that every past-moving
inextendible (i.e. not terminating at some finite point) causal curve through p must intersect
S. The past domain of dependence D~ (S) is defined similarly. The domain of dependence is
simply D(S) = DT (S) u D~(S).

Definition 6 (Cauchy horizons). The boundary of D™ (S) is the future Cauchy horizon H*(S).
The boundary of D™(S) is the past Cauchy horizon H™(S). They are both null surfaces.
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Figure 1: Left: The domains of dependence and Cauchy horizons for some achronal S < 3.
Right: The light cone of a point in (M, g).

Definition 7 (Cauchy surface). A closed achronal surface ¥ is a Cauchy surface if the domain
of dependence DT (X) is the entire manifold. Given information on a Cauchy surface, we can
predict what happens throughout the entire spacetime. If a spacetime has a Cauchy surface, then
it is called globally hyperbolic.

With these definitions, we now give the formulation of the cosmic censorship conjectures.



3 Formulations

Before we dare to formulate the cosmic censorship conjectures as lone-standing statements, we
first examine the processes leading to the formation of the singularities that the conjectures are
concerned with.

3.1 Gravitational Collapse

The classical picture of collapse is centred around Schwarzschild’s solutions to Einstein’s equa-
tions in a vacuum setting. In the coordinates used by Schwarzschild, the metric is of the form

2 om\
ds? = <1 - m> de® — (1 - m> dr? — r2(d6% +sin20 d¢?)  withe=G=1 (2)
T T

where 0 and ¢ are the usual spherical polar angle coordinates. We chose the radial coordinate
r such that each sphere defined by r constant and ¢ constant has intrinsic? surface area 47r2.
The metric form is invariant under the transformations ¢ — ¢ + C where C' is some constant
and ¢t — —t. The mass of the body collapsing is m. From (2), it is evident that at r = 2m, the
form of the metric breaks. This radius is called the body’s Schwarzschild radius.

Consider the situation of a spherically symmetric, nonrotating star undergoing collapse (figure
2). While the star’s spherical symmetry remains, the applicable metric is (2). Points at the
star’s surface are described by timelike lines and since the light cones of these points seem to
become narrower as they approach the Schwarzschild radius, one might think that this radius
where a singularity is formed. However, a freely falling observer (following a timelike/null
geodesic) will find that the elapsed total proper time they measure is finite. After this proper
time has elapsed, there are two possible scenarios:

1. A spacetime singularity lies waiting, and the observer is torn apart and sent into oblivion.
2. A new world awaits that requires some other coordinate system to be described.

Scenario 2 is what the observer will encounter. The ‘singularity’ at r = 2m is not a true
singularity; it is simply an artifact of the coordinates that the Schwarzschild metric is written
in. We can replace the time coordinate in (¢,r,6, ¢) by

v==t+7r+2mlog(r—2m). (3)

In the new coordinates (v, 7,0, ¢) (known as Eddington-Finkelstein coordinates), the metric (2)

becomes
2m

ds® = (1 - r> dv? — 2 dr dv — r*(d6? + sin? 0 d¢?) (4)
This metric is still valid at r = 2m. In fact, all of 7 € (0, 00) is covered by this metric and the
region 7 > 2m is equivalently described by (2) and (4). The region 0 < r < 2m is also described
perfectly well; the only radius where the Schwarzschild metric in Eddington-Finkelstein coordi-
nates breaks down is at r = 0. This is where we find the true singularity. In the left figure in
figure (2), the observer travelling along a timelike/null geodesic will see that there is nothing
special about r = 2m and that r = 0 is where they will certainly encounter scenario 1 from the
possible scenarios mentioned earlier. The increasingly warped curvature of spacetime is physi-
cally felt in the form of immense tidal forces, resulting in what we call ‘spaghettification’. The
Schwarzschild radius r = 2m is referred to as the ¢ absolute event horizon’, since it is the strict
boundary of the set of events that can be observed by an external inertial observer (in principle).

%j.e. can be measured within the surface itself with no reference to some larger space containing it.



This classical picture of spherically symmetric gravitational collapse has raised a number of
possible objections and provoked inquiries about the nature of the event horizon and the physics
beyond it. However, it remains a good foundation for further discussion on cosmic censorship.
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Figure 2: Spherically symmetric gravitational collapse in (1) Schwarzschild coordinates and (2)
Eddington-Finkelstein coordinates. Reproduced from [Penrose1999].

3.2 Initial view of cosmic censorship

Initially, the picture of censorship can be given as follows:

In a generic gravitational collapse, the resulting spacetime singularity is shielded
from view by an absolute event horizon.

From this initial picture, we would say that the alternative to a hidden singularity, a visible
singularity, would not occur generically (i.e. in your typical astrophysical situations) — that
is, there may exist exceptions where we have some magnificently special collapse. Satisfying
a standard criterion for unstoppable gravitational collapse simply requires a sufficiently large
mass to become confined into a sufficiently small region. For example, in the circumstance of
a large galaxy, there is no any reason to expect that there would be some physics that takes
precedence in order to prevent unstoppable collapse, but we cannot immediately infer that a
black hole will be produced in such a situation. For this, we must assume that in GR, this
notion of cosmic censorship holds true in some way.

Remark (Mathematical criteria for unstoppable collapse). These are the criteria:
1. The existence of a trapped surface.

2. The existence of a point whose future light cone begins to reconverge in every direction
along the cone.

A trapped surface is defined as follows (due to [ D:



Definition 8 (Trapped surface). A trapped surface is generally defined to be a closed, spacelike
2-surface T? with the property that the two systems of null geodesics which meet T? orthogonally
converge locally in future directions at the surface.
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Figure 3: The gravitational collapse of a nonrotating spherical star leading to a singularity, with
one spatial dimension suppressed. Reproduced from Fig 55 in | ].

Now, in either situation, (criterion 1 or criterion 2), with some physically reasonable assump-
tions: (1) nonnegativity of energy, (2) nonexistence of closed timelike curves, (3) some genericity
condition (eg. assuming every causal geodesic contains at least one point at which the Riemann
curvature is is not lined up in a particular way with the geodesic, i.e. with a tangent vector £¢,
there is at least one point where {[ R)cg[e€ f]gcgd = 0), then by | | a spacetime singularity
of some kind must occur.

Deducing that a black hole type singularity must occur whenever a trapped surface is formed is
not as direct as it might seem; you need the assumption of cosmic censorship for this deduction
to be valid. Even worse, deducing that any sort of spacetime singularity occurs at all requires us
to assume something nontrivial, eg. the very existence of a trapped surface in the first place. So,
there being a trapped surface does not imply the nonexistence of a singularity, and even more
so, there not being a trapped surface does not tell us anything about there being a singularity.

3.3 Old formulations

As seen with the classical collapse picture described in the previous section, the prototypical sin-
gular spacetime (i.e. a spacetime featuring singularities. Note that not all curved spacetimes in
GR are singular!) is the Schwarzschild spacetime. The Penrose diagram in figure 3 describes the
causal structure of the maximal analytic® Schwarzschild singularity. The first Penrose diagram
is for the maximally analytic extended Schwarzschild spacetime, with a spacelike singularity

3i.e. extended in terms of Eddington-Finkelstein coordinates beyond the Schwarzschild coordinate-induced
singularity at r = 2m.



S = {r = 0} hidden behind an absolute event horizon H*, i.e. S~ J~(Z7) = . Here, J*
are the causal future/past of the null infinity lines Z+. These are regions of ’conformal infinity’,
i.e. infinity in the sense of conformal diagrams. The second Penrose diagram for negative-mass
Schwarzschild spacetime. Again, S = {r = 0} is a true, i.e. curvature singularity but it is
timelike and S ¢ J~(Z"). Hence, the singularity is not hidden and is ‘naked’. The third Pen-
rose diagram models the deep interior of Reissner-Nordstrém and Kerr black holes. Here, the
singularity is timelike and can be thought of as ‘locally naked’, i.e. it is not visible at infinity
but in the neighbourhood of the singularity, it is no longer hidden.

These examples of singularities give us some intuition about the singularities mentioned in the
weak and strong cosmic censorship conjectures.

[ J
r=0
D

Figure 4: Penrose diagrams for (I) maximal analytic Schwarzschild spacetime (II) negative-mass
Schwarzschild (IIT) Reissner-Nordstrom and Kerr black holes.

Theorem 1 (Weak cosmic censorship. Penrose, 1969). In gravitational collapse, singularities
are always cloaked by horizons, i.e. SN J (Z1) = &.

Theorem 2 (Strong cosmic censorship, Penrose 1972). In generic gravitational collapse, there
are no ‘locally naked’ singularities, i.e. singularities are generically spacelike or null, and not
timelike.

Remark. In Figure 3.1, we showed the situation of a negative-mass Schwarzschild, which is un-
physical; hence, it is not considered to be a generic situation. There is no gravitational collapse
from a generic initial astrophysical situation; the naked singularity is always present. Hence, it
does not contradict the statement of weak cosmic censorship. The third Penrose diagram (that
of the Reissner-Nordstrom timelike singularity) is a physical situation, but the presence of the
genericity condition in this formulation of the strong cosmic censorship conjecture is essential
to making sure that Figure 3.111 does not violate it.

There is an even stronger statement, due to Mihalis Dafermos, that he calls the ‘very strong
cosmic censorship conjecture’:

Theorem 3 (Very strong cosmic censorship). In gravitational collapse, singularities are gener-
ically spacelike.



3.4 Modern formulations
3.4.1 The Cauchy problem

Before the modern formulations of the conjectures are shown, we introduce the Cauchy prob-
lem. Yvonne Choquet-Bruhat’s seminal 1952 paper showed that Einstein’s equations can be
constructed as an initial value (Cauchy) problem, i.e. given initial data, there exist correspond-
ing solutions to the Einstein equations. This result is extremely powerful; it shows that GR is
a predictive, deterministic theory. To understand the central theorem by Choquet-Bruhat, we
provide a few definitions from | |:

Definition 9 (Extrinsic curvature). Let S be a smooth spacelike 3-surface in a spacetime M.
For each p € S, we may draw the unique timelike geodesic orthogonal to S. The field £¢ of
future-directed unit tangent vectors to this geodesic satisfies the equations

vagb = v[agb]a favagb =0 (5)

in a neighbourhood of S. Then, the tensor field V ,&, defined in a neighbourhood of S induces the
symmetric tensor field Cog on S. In other words, the extrinsic curvature is the rate of change
of the unit tangent £ with respect to S, where £% is tangent to the geodesics normal to S.

Definition 10 (Initial data set). An initial data set is a smooth 3-dimensional manifold ¥ en-
dowed with a positive-definite metric hog and a symmetric tensor field (the extrinsic curvature)
Cop subject to the constraint equations

R+ C§CL—(CI)? =0, Va(C§—65CT) =0 (6)
where R is the curvature scalar of 3.

Definition 11 (Development of initial data). A development of an initial data set is a spacetime
M (a solution of FEinstein’s equations) along with a diffeomorphism of ¥ onto a spacelike 3-
dimensional submanifold of M, such that

1. The metric and extrinsic curvature of S (inherited from M) coincide with the images of
hag and Cppg given as initial data on X.

2. 8 is a Cauchy surface for M.
We may identify S with X because the former is the image of the latter.
Thus, the local existence theorem can be stated as follows:
Theorem 4 (Local existence for the Cauchy problem). FEvery initial data set has a development.

Definition 12 (Extension). Let M and M’ be developments of the initial data set S. Then,
M is an extension of M’ if there exists an isometry from M’ onto some T < M such that
every point of S is invariant under the isometry. Then, we can regard M’ to be embedded in
M. See Figure 5.

Consider the following theorem due to Choquet-Bruhat and later developed further with Robert
Geroch in | |:

Theorem 5. Let (3, g, K) be a smooth vacuum initial data set (comprising the smooth hyper-
surface 33, the metric g on X, and the extrinsic curvature K on X). Then, there exists a unique
smooth spacetime (M, g) such that

1. Ric(g) = 0.



2. (M, g) is globally hyperbolic with Cauchy surface ¥ with induced first and second funda-
mental forms g, and K respectively.

3. Any other smooth spacetime with properties 1 and 2 isometrically embeds into M.

(M, g) is called the mazimal Cauchy development, i.e. it is the largest globally hyperbolic
spacetime that evolves from the initial data in the sense of development.

For the proof of this theorem, we refer the reader to | ]. While this specific version is for
an initial data set in vacuo, theorems along similar lines can be proven for Einstein-dust fields,
Einstein-matter fields, and the like.

Figure 5: M is an extension of M’. If A and A’ are diffeomorphisms from ¥ into subsets S and
S" of M and M’ respectively, and if ¢ is the isometry from M’ onto S © M then A=tpA’ is
the identity mapping [ : ¥ — 3.

We must accept this theorem in order to do any further work; if we do not assume it to hold, then
the theory is no longer deterministic and we cannot make predictions. Accepting the primacy
of this theorem means that assumptions may only be made® on the initial data ¥ and whatever
properties we wish to look at must be describable in terms of maximal Cauchy developments
(M, g). Since the maximal Cauchy development (M, g) is globally hyperbolic (that is, it has a
Cauchy surface), the finite boundary of M cannot be timelike anywhere. Thus, by definition,
there is no such thing as a timelike singularity. Hence, it makes little sense to say that cosmic
censorship is a statement about the fact that there cannot be timelike singularities (as done in
the ‘old’ formulation of the strong cosmic censorship conjecture), since that is trivially true —
hence the reason for a modern formulation of cosmic censorship.

Denoting the future null infinity of M as Z, we necessarily have S\ J~(Z7) = .

*i.e. we cannot make any assumptions (genericity, etc.) on the spacetime constituting the maximal develop-
ment since it is solely a product of the initial data.



3.4.2 Schwarzschild in the context of Cauchy evolution

We return to our maximally analytic Schwarzschild singularity Penrose diagram and try to ap-
ply the notions we have developed to see what Cauchy evolution looks like in action.

Consider a set of initial data that is 2-ended and asymptotically flat on the hypersurface 3, as
visualised in Figure 6. The future Cauchy development is maximal but (M, g) is geodesically
incomplete; that is, it has geodesics of finite affine length.” This incompleteness is stable with
respect to a perturbation of the initial data on ¥. In conjunction with the singularity theorem
of | |, this means that under a perturbation of the initial data, the resulting maximal
development (M, g) will still possess a trapped surface. Taking this and the global hyperbolicity
of M into account, we see that geodesic incompleteness is preserved. However, independent of
the fact that M is geodesically incomplete, the future null infinity® Z* is complete | . M
is also not 2, since it contains the curvature singularity » = 0 but [ | showed that the
manifold is inextensible as a continuous Lorentzian manifold, resulting in the physical effect of
crushing tidal forces on observers approaching » = 0. The singularity itself can be characterised
as a spacelike boundary S = {r = 0} of M.

Figure 6: % is a 2-ended, asymptotically flat hypersurface. Strictly speaking, this is not a
physical set of initial data but it is okay for our illustrative purposes.

Figure 7 shows the case of the negative-mass Schwarzschild singularity. The maximal future
Cauchy development of the hypersurface ¥ is the darker shaded region (shown in isolation on
the right). Recall that since we can only talk about the properties in terms of the maximal
Cauchy development, we must find a way to characterise the ‘naked’ singularity in terms of this
structure. This was done by [ |; the segment of future null infinity Z* is incomplete. In
terms of the gravitational wave experiment description we gave for the Cauchy development for
the usual Schwarzschild case, this would mean that there exists a time in the future where such
experiments would have to cease in the context of measuring gravity waves from this naked
singularity. The power of this formulation is that we no longer have to explicitly refer to the
singularity; everything can be characterised in terms of the Cauchy problem.

SWald states that a more precise characterisation of geodesic incompleteness is that “there exist geodesics
that are inextendible in at least one direction but have only a finite range of affine parameter.” He further states
that a spacetime is defined to be singular if it possesses at least one incomplete geodesic.

SWe might say that gravitational wave experiments are performed in this region



Figure 7: ¥ is a hypersurface that is asymptotically flat towards the rightmost apex of the
triangle but incomplete at r = 0 due to the presence of the singularity.

Note the presence of the Cauchy horizon H* of M.” We may smoothly extend the maximal
Cauchy development (M, g) to a larger spacetime (M, g) across this horizon (rendering #* a
null hypersurface in these constructions) resulting in non-globally hyperbolic extensions that
are not uniquely determined by the initial data, i.e. M is non-unique. Thus, we have space-
times that no longer adhere to the Cauchy problem as formulated by Choquet-Bruhat. This
is a failure of determinism; we cannot make predictions in these extensions. However, recall
that in constructing the hypersurface as shown in Figure 7, we have made an arbitrary choice
independent of the initial data. X is incomplete, so we can say that the spacetimes in the cases
of negative-mass Schwarzschild and Reissner-Nordstrom/Kerr, containing timelike singularities,
are not physically valid.

This idea can be extended to the case of the Reissner-Nordstrom/Kerr spacetime. In this case,
however, the spacetimes can be extended in such a way that all incomplete geodesics can pass
through to the spacetime extension, so they may be regarded as maximal Cauchy developments
in and of themselves. There is nothing singular about this spacetime, since it does not possess a
finite geodesic. With reference to the original formulations of the cosmic censorship conjectures,
we can now think of them as statements about determinism, rather than just singularities.

3.5 Modern formulations

We now attempt to provide a more modern formulation of weak cosmic censorship given the
machinery of the Cauchy problem we have acquired.

"[Hawking1967] provides one of the first views viz. Cauchy horizons with respect to the notion of Cauchy
developments.
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Conjecture 1 (Weak cosmic censorship, Christodolou 1999). For complete, asymptotically flat
initial data in vacuo, the mazimal Cauchy development has a complete null infinity Z+. [Chr99]

There is no mention of singularities or the like; this is a global existence statement that is
perfectly compatible® with Penrose and Hawking’s original singularity theorems.

Conjecture 2 (Strong cosmic censorship, Christodolou 1999). For generic, complete, asymp-
totically flat initial data in vacuo, the mazximal Cauchy development is future inextendible as a
suitably reqular Lorentzian manifold. [Chr99]

This is a statement of global uniqueness, equivalent to determinism. There is no sense of
this statement being ‘stronger’ than the weak cosmic censorship statement; together, they are
statements of global existence and uniqueness. Building from these statements, Dafermos’s
‘very strong’ cosmic censorship is as follows:

Conjecture 3 (Very strong cosmic censorship, Dafermos). For generic, asymptotically flat
initial data in vacuo, the maximal Cauchy development is future inextendible as a Lorentzian
manifold with metric assumed to be merely continuous. Moreover, the finite boundary of space-
time is spacelike.

External inertial observers travelling along incomplete geodesics will find themselves in the
presence of infinite curvature generating destructive tidal forces; informally, they will be sent
into oblivion by infinite tidal deformations.

3.5.1 Amending weak cosmic censorship — spherical symmetry consideration

Figure 8: Left: A homogeneous dust ball undergoing gravitational collapse. Right: (1) Penrose
diagram for the collapse of the dust ball as modelled by Oppenheimer-Snyder. (2), (3) Penrose
diagrams due to Christodolou, modelling Cauchy developments for examples of initial data.

Consider a homogeneous dust ball exhibiting spherical symmetry undergoing gravitational col-
lapse as modelled by Oppenheimer and Snyder in [O539]. There is a singularity S = {r = 0},
a acuum initial data set on the hypersurface 3 that is complete and asymptotically flat.

8However, we will see that this statement does not hold in general; under an Einstein scalar field system
exhibiting spherical symmetry, it fails. To make it globally applicable, we will amend it as required post a
discussion of spherical symmetry consideration.
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Theorem 6 (Christodolou, 1983). For the spherically symmetric Einstein dust system, generic
and arbitrarily small perturbations of the homogeneous data on % give rise to a maximal Cauchy
development (M, g) that is smoothly extendible across a Cauchy horizon CH*. [ /

This theorem corresponds to Figure 8.2. We see that ZT is complete. Contrast this with
Figure 8.3, where a Cauchy horizon is also present but Z* is incomplete. In both spacetimes,
the manifold is extendible beyond the Cauchy horizon. The first Penrose diagram in Figure
8 is consistent with every formulation of cosmic censorship we have stated thus far but by
Christodolou’s theorem, weak and strong cosmic censorship fail for the Einstein dust system
because as demonstrated in | |. However, we know that dust is not a very good model for
matter, so we can examine the Einstein scalar field system instead to get a better idea of the
validity of the conjectures in more astrophysically accurate scenarios.

Theorem 7 (Christodolou, 1990). For the spherically symmetric Einstein scalar field system,
there exist reqular, complete, asymptotically flat initial data on X giving rise to a maximal
Cauchy development (M, g) with the Penrose diagrams Figures 8.2, 8.3.

By this theorem, we see that our initial attempt at formulating weak cosmic censorship in a
modern fashion fails. Fortunately, there is a simple fix — we introduce the genericity condition
for the initial data.

Conjecture 4 (Weak cosmic censorship, amended). For generic and asymptotically flat vacuum
initial data, the mazimal Cauchy development has a complete null infinity I .

The spherically symmetric Einstein dust and scalar field systems mentioned in these theorems do
not have this genericity condition, hence we can no longer consider the issue of cosmic censorship
using these examples. With this genericity condition taken on the spherically symmetric Einstein
scalar field system, Christodolou formulated the following:

Theorem 8 (Christodolou, 1999). Weak, strong, and very strong cosmic censorship hold for the
spherically symmetric Finstein scalar field system, i.e. for generic spherically symmetric initial
data, the mazimal future Cauchy development has Penrose diagram Figure 8.1. with complete
future null infinity and a spacelike singularity.

Hence, we may say that given the initial data satisfying genericity, [ | shows that the scalar
field satisfies our mathematical criteria to a sufficient extent to be considered representative of
suitable matter.

4 Conclusion

The cosmic censorship conjectures arose from the foundations laid by Hawking and Penrose via
their singularity theorems. The original formulations of the conjectures were based on the idea of
unstoppable collapse resulting in the creation of a trapped surface, as illustrated by the classic
example of the coordinate and curvature singularities inherent in the Schwarzschild metric.
These formulations were rooted in the machinery of causality. However, the conjectures were
actually deeper statements about global existence and uniqueness, accessible via the machinery
of Cauchy evolution. The modern formulations are rooted in the assumption of the primacy
of the Cauchy problem as posed by Cauchy-Bruhat, which ultimately provide GR with its
deterministic character as a physical theory.
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